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Abstract. We extend so-called slit-slide-sew bijections to constellations and qua-
siconstellations. We present an involution on the set of hypermaps given with an
orientation, one distinguished corner, and one distinguished edge leading away from
the corner while oriented in the given orientation. This involution reverts the orienta-
tion, exchanges the distinguished corner with the distinguished edge in some sense,
slightly modifying the degrees of the incident faces in passing, while keeping all the
other faces intact.

The involution specializes into a bijection interpreting combinatorial identities and
allows to recover the counting formula for constellations or quasiconstellations with a
given face degree distribution.
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1 Introduction

In the present work, we pursue the investigation of so-called slit-slide-sew bijections,
introduced in [1] on forests and plane quadrangulations, and then further developed in
[2, 3] on plane bipartite and quasibipartite maps. Here, we focus on a generalization of
the latter, called constellations and quasiconstellations.

Hypermaps. Recall that a plane map is an embedding of a finite connected graph (pos-
sibly with multiple edges and loops) into the sphere, considered up to orientation-
preserving homeomorphisms. Now fix an integer p ≥ 2. A (plane) p-hypermap is a
plane map whose faces are shaded either dark or light in such a way that

• adjacent faces do not have the same shade (one is dark, the other light);

• each dark face has degree p.

These actually generalize maps, which correspond to 2-hypermaps. In the terminology
of hypermaps, light faces generalize faces and might be called hyperfaces, whereas dark
faces generalize edges and are called hyperedges. We do not use this terminology here.
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Figure 1: A quasi-3-constellation of
type (9, 6, 2, 6, 3, 3, 4, 3, 3). The two
flawed faces, highlighted in orange,
are f3 and f7. Every light face has
a marked corner, always represented
by a red arrowhead.

A (plane) p-constellation is a p-hypermap
such that the degrees of its light faces are
all multiples of p. In a p-hypermap, a
light face whose degree is not a multiple
of p will be called a flawed face. A p-
constellation is thus a p-hypermap without
flawed faces. A quasi-p-constellation is a p-
hypermap with exactly two flawed faces.
Note that, in a p-hypermap, the sum of the
degrees of the light faces is necessarily a
multiple of p, since it is equal to the sum
of the degrees of the dark faces, which are
all p. As a result, a p-hypermap cannot
have a single flawed face and, in a quasi-
p-constellation, the two flawed faces have,
modulo p, degrees +k and −k for some
0 < k < p.

Enumeration. For an r-tuple a = (a1, . . . , ar) of positive integers, let us denote by
C(a) the number of p-hypermaps with exactly r light faces, numbered f1, . . . , fr and of
respective degrees a1, . . . , ar, each bearing a marked corner1. The r-tuple a will be called
the type of such p-hypermaps. See Figure 1. By elementary considerations and Euler’s
characteristic formula, the integers

E(a) :=
r

∑
i=1

ai , D(a) :=
E(a)

p
, and V(a) := E(a) − D(a)− r + 2

are respectively the numbers of edges, dark faces, and vertices of p-hypermaps of type a.
Generalizing Tutte’s so-called formula of slicings [6], it has been computed that, when at
most two ai’s are not in pN, that is, for p-constellations [4] or quasi-p-constellations [5],
it holds that

C(a) = ca

(

E(a) − D(a)− 1
)

!
V(a) !

r

∏
i=1

α(ai), where α(x) :=
x!

⌊

x/p
⌋

!
(

x − ⌊x/p⌋ − 1
)

!

and ca =

{

1 if p divides every ai

p − 1 otherwise
.

(1.1)
1Recall that a corner is an angular sector delimited by two consecutive edges around a vertex.
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Combinatorial identities. In the present work, we give a bijective interpretation for the
following combinatorial identity, which transfers one degree from one face to another.

Proposition 1 (Transferring one degree from f1 to f2). Let a = (a1, . . . , ar) be an r-tuple of
positive integers such that a1 ≥ 2, and with coordinates equal modulo p to

(i) either (k,−k, 0, . . . , 0) for some k ∈ {0, . . . , p − 1},

(ii) or (1, 0, . . . , 0,−1, 0, . . . , 0), with the −1 in any position from 3 to r.

Let also ã = (ã1, . . . , ãr) := (a1 − 1, a2 + 1, a3, . . . , ar). Then the following identity holds:(
a1 − ⌈a1/p⌉

) (
a2 + 1

)
C(a) =

(
ã1 + 1

) (
ã2 − ⌈ã2/p⌉

)
C(ã) . (1.2)

To obtain (1.2) from (1.1), one might first observe that, for any x ∈ N,

α(x)
α(x − 1)

= dx
x

x − ⌈x/p⌉ where dx =

{
p − 1 if p | x
1 if p ∤ x

,

and then that, in both cases (i) and (ii), cada1 = cãdã2 = p − 1.
We furthermore treat the case of a degree 1-face, which may easily be obtained as

above.

Proposition 2 (Transferring the degree of a degree 1-face f1 to f2). Let a = (1, a2, . . . , ar)
and ã = (ã2, . . . , ãr) := (a2 + 1, a3, . . . , ar) be respectively an r-tuple and an r − 1-tuple of
positive integers, both having at most two coordinates not lying in pN. Then the following
identity holds: (

a2 + 1
)

C(a) = V(ã)
(
ã2 − ⌈ã2/p⌉

)
C(ã) . (1.3)

It is easy to see that the number of p-constellations with exactly one light face of
degree pn is equal to the known number of p-ary trees with n nodes. Using this as
initial condition, Propositions 1 and 2 provide yet another proof of (1.1).

Methodology. In order to bijectively interpret (1.2) and (1.3), the idea is to distinguish
elements, such as edges, vertices, faces, corners, etc., in such a way that each side of
an equation of interest counts maps given with such distinguished elements. Remark
that we will always use the word “distinguished” to designate these extra elements,
keeping the word “marked” only for the marked corners, which we see as inherent to
the hypermaps into consideration.

Once both sides of the considered equation are properly interpreted as cardinalities
of sets of maps with distinguished elements, we bijectively go from one set to the other
as follows. Using the distinguished elements, we construct a directed path in the map,
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called sliding path. We then slit the map along this sliding path and sew back together
the sides of the slit after sliding by one unit, in the sense that the left side of the i-th edge
is sewn back on the right side of the i ± 1-th edge (the ±1 being the same for all edges
and determined by some rule). This mildly modifies the map along the path but does
not affect its faces, except the two that are around the extremities of the sliding path.
In the process, new distinguished elements naturally appear in the resulting map; these
allow us to recover the sliding path in order to slide back.

Organization of the paper. The remainder of the document is structured in the fol-
lowing manner. We start by giving in Section 2 the definitions and conventions we use,
as well as a combinatorial interpretation of the prefactor

(
a − ⌈a/p⌉

)
appearing in the

identities (1.2) and (1.3). We then present in Section 3 our bijective interpretation of these
identities through a more general involution on the set of maps given with an orienta-
tion, a distinguished corner, and a distinguished edge satisfying an extra constraint.

2 Preliminaries
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Figure 2: Distinguishing a corner around
the marked corner.

Distinguishing a corner. Following
previous works on slit-slide-sew bijec-
tions, we use the convention, depicted
in Figure 2, that the marked corner of
a face creates two possible corners to
distinguish. One might think of the marked corner as a dangling half-edge, with one
corner on each side. As a result, a face of degree a bearing its marked corner has a + 1
possible corners to distinguish.

Edge orientation. As is customary, we will orient the edges of the hypermaps we con-
sider, in such a way that light faces always lie to the same side of the oriented edges (and
thus dark faces always lie to the same other side). These orientations will be called the
light-left orientation when the light faces2 all lie to the left, and the light-right orientation
when the light faces all lie to the right. In other words, in the light-right orientation,
the edges are oriented clockwise around light faces and counterclockwise around dark
faces. See Figure 3. We will need to use both orientations in the present paper. We will
always clearly mention which orientation we use whenever it matters. Without specific
mention, both orientations can be used. Once one of the two possible orientations is

fixed, we will use the following conventions.

2Recall that the light faces are the main objects of focus.
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Figure 3: Edge orientation and
definitions. Here, the light-right
orientation is depicted.

Given an edge e, we will respectively de-
note by e− and e+ the origin and end of the
edge e, oriented as convened. The corner pre-
ceding e is defined as the corner ce delimited
by e and the edge that precedes e in the con-
tour of the incident light face, in the convened
orientation. Similarly, we denote by c+ the ver-
tex incident to a corner c.

Paths. A path from a vertex v to a vertex v′ is
a finite sequence ℘ = (e1, e2, . . . , ek) of edges
such that e−1 = v, for 1 ≤ i ≤ k − 1, e+i = e−i+1,
and e+k = v′. Its length is the integer k, which we denote by [℘] := k. A path is called
simple if the vertices it visits are all distinct.

Beware that a path is only made of edges oriented in the convened orientation. In
other words, edges cannot be used “backward.” In particular, this means that all the
faces lying to the left of a path are of the same shade (either all light or all dark), whereas
all the faces lying to its right are of the other shade. The side of the path where the faces
are all light will be called its light side, whereas the other side will be called its dark side.

Directed metric and geodesics. We will use the directed metric associated with the
convened orientation: given two vertices v, v′ in a p-hypermap, we denote by~d(v, v′) the
smallest k for which there exists a path from v to v′ of length k. (We put an arrow on
top in the notation to keep in mind that this is only a directed metric.) A geodesic from v
to v′ is such a path.

ek ek+1

Figure 4: Definition
of the lightest geodesic.
The edges going closer
to v′ are in red.

There are generally several geodesics from a given
vertex v to a target vertex v′. Among all of these, one
will be of particular interest in this work: the lightest
geodesic, constructed as follows. It is only well defined
from a starting edge or corner e0 such that e+0 = v. (The
starting element e0 does not belong to the path.) Then,
provided e0, e1, . . . , ej have already been constructed
and the path is not complete (that is, e+j 6= v′), we set
the subsequent edge ej+1 as the one, among the edges e
such that e− = e+j and ~d(e+, v′) = ~d(e+j , v′) − 1, that

comes first while turning around e+j in the direction
incoming edge, light face. See Figure 4. In other words, the lightest geodesic is the left-
most geodesic if the convened orientation is the light-left orientation and the rightmost
geodesic if the convened orientation is the light-right orientation.
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Edge types. Given a fixed vertex v in a p-hypermap, we may differentiate three types
of edges: an edge e is said to be

• leaving v if d⃗(v, e+) = d⃗(v, e−) + 1;

• approaching v if d⃗(v, e+) = d⃗(v, e−) + 1 − p;

• irregular with respect to v if d⃗(v, e+)− d⃗(v, e−) ̸≡ 1 mod p.

Observe that 1 − p ≤ d⃗(v, e+) − d⃗(v, e−) ≤ 1 since there is always a path of length 1,
namely the path consisting of the single edge e, as well as a path from e+ to e− of length
p − 1, made of all the other edges incident to the dark face incident to e. As a result, if e
is irregular with respect to v, then it holds that d⃗(v, e+)− d⃗(v, e−) ∈ {2− p, 3− p, . . . , 0}.
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Figure 5: The different types of edges incident to a flawed face.The distances to v are
written in the vertices. Around f , the

(

10 − ⌈10/4⌉
)

= 7 red edges are leaving v; the
⌊10/4⌋ = 2 blue edges are approaching v; the green edge is irregular with respect to v.

The following proposition gives the number of each type among edges incident to
a given face in a p-constellation or a given flawed face in a quasi-p-constellation; this
provides an interpretation to the prefactor

(

a − ⌈a/p⌉
)

appearing in (1.2) and (1.3). We
refer the reader to the extended version of this paper for a proof.

Proposition 3. We consider a vertex v and a light face f of degree a in a p-hypermap.

(1) If the p-hypermap is a p-constellation then, among the a edges incident to f , a − a/p are
leaving v; a/p are approaching v; none are irregular with respect to v.

(2) If the p-hypermap is a quasi-p-constellation and f a flawed face then, among the a edges
incident to f ,
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are leaving v; ⌊a/p⌋ are approaching v; one is irregular with
respect to v.
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3 Bijective interpretation

3.1 Slit slide sew

Let us first describe the operation at the heart of our construction. See Figure 6. Assume
that, on some p-hypermap m, we have a simple path ℘ = (e1, e2, . . . , ek) linking some
corner c in some light face f to a different corner c′ in some light face f ′ (which may
possibly be equal to f ), that is, such that e−1 = c+ and e+k = c′+. We may then follow ℘,
entering from the corner c and exiting through the corner c′. This creates a simple
path on the sphere, starting inside the face f and finishing inside f ′. We may slit the
sphere along this path, thus doubling the sides of the path. In the hypermap m, this
doubles the path ℘, making up two copies, one incident to light faces and the slit, and
one incident to dark faces and the slit. We denote by ℓ = (ℓ1, . . . , ℓk) the former and by
d = (d1, . . . , dk) the latter.
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doubles the path ℘, making up two copies, one incident to light faces and the slit, and
one incident to dark faces and the slit. We denote by ℓ = (ℓ1, . . . , ℓk) the former and by
d = (d1, . . . , dk) the latter.
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Figure 6: The slit-slide-sew operation on a p-hypermap.

Note that the data of ℘ is not sufficient to properly define this operation; one needs to
know from which corner to enter ℘ in order to decide if an edge incident to e−1 becomes
incident whether to ℓ

−
1 or to d−1 . Similarly, one needs to know through which corner to

exit ℘.
We then sew back ℓ onto d but only after sliding by one unit, in the sense that we

match ℓi+1 with di, for every 1 ≤ i ≤ k − 1. For further reference, we denote by ℓi+1 ⋊⋉ di
the resulting edge. Observe that, except from f and f ′, the faces are not altered by the
process. Observe also that ℓ1 and dk are not matched with anything:

• dk is still incident to the original dark face and is now also incident to f ′;

• ℓ1 is still incident to the original light face and is now also incident to f .

Figure 6: The slit-slide-sew operation on a p-hypermap.

Note that the data of ℘ is not sufficient to properly define this operation; one needs to
know from which corner to enter ℘ in order to decide if an edge incident to e−1 becomes
incident whether to ℓ−1 or to d−1 . Similarly, one needs to know through which corner to
exit ℘.

We then sew back ℓ onto d but only after sliding by one unit, in the sense that we
match ℓi+1 with di, for every 1 ≤ i ≤ k − 1. For further reference, we denote by ℓi+1 ⋊⋉ di
the resulting edge. Observe that, except from f and f ′, the faces are not altered by the
process. Observe also that ℓ1 and dk are not matched with anything:

• dk is still incident to the original dark face and is now also incident to f ′;

• ℓ1 is still incident to the original light face and is now also incident to f .
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Consequently, the result is no longer a p-hypermap since ℓ1 is incident to light faces
from both sides. However, in the case where ℓ1 is actually a dangling edge (an edge
with one extremity of degree 1), removing it provides a p-hypermap. This happens if
and only if c is the corner preceding e1 ; this will always be the case in the present work.

3.2 Face of degree two or more

We now present the bijective interpretation for the identity (1.2) of Proposition 1.

Involution. We define a mapping Φ on the set H of quadruples (O, m, c, e), where

• O is an orientation (either light-left or light-right);

• m is a p-hypermap;

• c is a distinguished corner of some light face;

• e is a distinguished edge leaving c+ in the orientation O.

We break down the process into the following steps. See Figure 7.

1. Reorientation
From now on, we convene to use the reverse orientation, which we denote by Õ.

2. Sliding path
We consider the corner ce preceding e and the lightest geodesic γ from ce to c+.

3. Slitting, sliding, sewing
We slit, slide, sew along γ from ce to c as described in the previous section: along γ,
the light side of an edge is now matched with the dark side of the previous edge.

4. Output
The unmatched light side of the first edge of γ yields a dangling edge; we remove
it and denote the resulting corner by c̃. We denote the edge corresponding to the
unmatched dark side of the final edge of γ by ẽ. We let m̃ be the resulting map.
Finally, the output of the construction is the quadruple Φ(O, m, c, e) := (Õ, m̃, c̃, ẽ).

Theorem 4. The mapping Φ : H → H is an involution.

We refer the reader to the extended version of this work for the proof of Theorem 4.
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γ

Figure 7: The involution Φ : H → H. Only the orientation around the faces of interest
and along γ are depicted. Top left. The input. Top right. We changed the orientation
and defined the sliding path γ. Bottom left. We slit along the path. The dashed lines
indicate to sew back after sliding. Bottom right. The output.

Specialization. We now see how Φ specializes into a bijection interpreting (1.2). We let

a = (a1, . . . , ar) and ã = (ã1, . . . , ãr) := (a1 − 1, a2 + 1, a3, . . . , ar)

be as in the statement of Proposition 1. Note that this means that p-hypermaps of type a

are either p-constellations or quasi-p-constellations whose first face is flawed. Similarly,
p-hypermaps of type ã are either p-constellations or quasi-p-constellations whose second

face is flawed.
We fix an orientation O and define the following sets, whose cardinalities are respec-

tively the left-hand side and the right-hand side of (1.2), by Proposition 3 (recall also the
convention at the begining of Section 2 for distinguishing corners).

• We let M be the set of p-hypermaps
of type a carrying

– one distinguished corner c in
the second face,

– one distinguished edge e inci-
dent to the first face and leav-
ing c+, for the orientation O.

• We let M̃ be the set of p-hypermaps of
type ã carrying

– one distinguished corner c̃ in the
first face,

– one distinguished edge ẽ incident
to the second face and leaving c̃+,
for Õ.

Figure 7: The involution Φ : H → H. Only the orientation around the faces of interest
and along γ are depicted. Top left. The input. Top right. We changed the orientation
and defined the sliding path γ. Bottom left. We slit along the path. The dashed lines
indicate to sew back after sliding. Bottom right. The output.

Specialization. We now see how Φ specializes into a bijection interpreting (1.2). We let

a = (a1, . . . , ar) and ã = (ã1, . . . , ãr) := (a1 − 1, a2 + 1, a3, . . . , ar)

be as in the statement of Proposition 1. Note that this means that p-hypermaps of type a
are either p-constellations or quasi-p-constellations whose first face is flawed. Similarly,
p-hypermaps of type ã are either p-constellations or quasi-p-constellations whose second
face is flawed.

We fix an orientation O and define the following sets, whose cardinalities are respec-
tively the left-hand side and the right-hand side of (1.2), by Proposition 3 (recall also the
convention at the begining of Section 2 for distinguishing corners).

• We let M be the set of p-hypermaps
of type a carrying

– one distinguished corner c in
the second face,

– one distinguished edge e inci-
dent to the first face and leav-
ing c+, for the orientation O.

• We let M̃ be the set of p-hypermaps of
type ã carrying

– one distinguished corner c̃ in the
first face,

– one distinguished edge ẽ incident
to the second face and leaving c̃+,
for Õ.
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f2

f̃1

f̃2 +1

−1

M̃
M

c

e

ẽ
c̃

Here, p = 3, we are in the case (ii) of Proposition 1, and O = light-left.

The pictograph above summarizes the definitions of M and M̃. The red ±1 on the
right shows the increase or decrease of the degree of the face in M̃ in comparison with
the one of the corresponding face in M. In order to avoid confusion, we denote the first
and second faces of maps in M by f1 and f2 as before, and use f̃1 and f̃2 instead, for
maps in M̃. The paths symbolize the fact that the edges are leaving the corners.

Remark 1. Note that the convention on the orientation of edges is not the same in the
definitions of the sets M and M̃. This clearly bears no effects from an enumeration
point of view but is of crucial importance for our bijections.

Corollary 5. The mapping Φ specializes into a bijection from {(O, m, c, e) : (m, c, e) ∈ M}
onto {(Õ, m̃, c̃, ẽ) : (m̃, c̃, ẽ) ∈ M̃}, thus providing a bijection between M and M̃.

3.3 Face of degree one

We proceed to the bijective interpretation for the identity (1.3) of Proposition 2, which
works in a similar fashion as before.

Setting. Let a = (1, a2, . . . , ar) and ã = (ã2, . . . , ãr) := (a2 + 1, a3, . . . , ar) be tuples of
positive integers, both with at most two coordinates not lying in pN. In order not to
be confused by the index shift in ã2, we denote the faces of p-hypermaps of type ã

by f̃2, . . . , f̃r. In particular, p-hypermaps of type ã are either p-constellations, or are
quasi-p-constellations whose face f̃2 (the one with degree ã2) is flawed. We fix an orien-
tation O and define the following sets, whose cardinalities are the sides of (1.3), again by
Proposition 3 for the right-hand side.

• We let N be the set of p-hypermaps
of type a carrying

– one distinguished corner c in
the face f2.

• We let Ñ be the set of p-hypermaps of
type ã carrying

– one distinguished vertex ṽ,

– one distinguished edge ẽ incident
to f̃2 and leaving ṽ for Õ.

Here, p = 3, we are in the case (ii) of Proposition 1, and O = light-left.

The pictograph above summarizes the definitions of M and M̃. The red ±1 on the
right shows the increase or decrease of the degree of the face in M̃ in comparison with
the one of the corresponding face in M. In order to avoid confusion, we denote the first
and second faces of maps in M by f1 and f2 as before, and use f̃1 and f̃2 instead, for
maps in M̃. The paths symbolize the fact that the edges are leaving the corners.

Remark 1. Note that the convention on the orientation of edges is not the same in the
definitions of the sets M and M̃. This clearly bears no effects from an enumeration
point of view but is of crucial importance for our bijections.

Corollary 5. The mapping Φ specializes into a bijection from {(O, m, c, e) : (m, c, e) ∈ M}
onto {(Õ, m̃, c̃, ẽ) : (m̃, c̃, ẽ) ∈ M̃}, thus providing a bijection between M and M̃.

3.3 Face of degree one

We proceed to the bijective interpretation for the identity (1.3) of Proposition 2, which
works in a similar fashion as before.

Setting. Let a = (1, a2, . . . , ar) and ã = (ã2, . . . , ãr) := (a2 + 1, a3, . . . , ar) be tuples of
positive integers, both with at most two coordinates not lying in pN. In order not to
be confused by the index shift in ã2, we denote the faces of p-hypermaps of type ã
by f̃2, . . . , f̃r. In particular, p-hypermaps of type ã are either p-constellations, or are
quasi-p-constellations whose face f̃2 (the one with degree ã2) is flawed. We fix an orien-
tation O and define the following sets, whose cardinalities are the sides of (1.3), again by
Proposition 3 for the right-hand side.

• We let N be the set of p-hypermaps
of type a carrying

– one distinguished corner c in
the face f2.

• We let Ñ be the set of p-hypermaps of
type ã carrying

– one distinguished vertex ṽ,

– one distinguished edge ẽ incident
to f̃2 and leaving ṽ for Õ.
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f1

f2 f̃2 +1

ÑN

c

ẽ
ṽ

We put f1 on the pictograph since we think of it as the “missing” distinguished
element for N . Note that we do not need to specify an orientation for maps in N ; we
will however use the orientation O for these maps in due time. The bijections between N
and Ñ can be thought of as degenerate versions of the one of the previous section. Here,
we do not have an involution; we need to describe both mappings. We break them down
into similar steps as above. See Figure 8.

Suppressing a face. We consider (m, c) ∈ N .

1. From this point on, we use the reverse orientation Õ.

2. We consider the lightest geodesic γ from the unique corner of f1 to c+.

3. We denote by d0 the unique edge incident to f1. We slit, slide, sew along γ from the
unique corner of f1 to c as described in Section 3.1, while furthermore matching
the unmatched light side of the first edge with d0.

4. We set Ψ
−
(m, c) := (m̃, ṽ, ẽ), where m̃ is the resulting map, ẽ is the edge correspond-

ing to the unmatched dark side of the final edge of γ, and ṽ is the origin of γ.

f1f1 f2f2

f̃2

m 1.–2.

3. m̃

cc

ẽ

d0

ṽ

γ

Figure 8: The bijection in the case of a degree 1-face, from N to Ñ .

We put f1 on the pictograph since we think of it as the “missing” distinguished
element for N . Note that we do not need to specify an orientation for maps in N ; we
will however use the orientation O for these maps in due time. The bijections between N
and Ñ can be thought of as degenerate versions of the one of the previous section. Here,
we do not have an involution; we need to describe both mappings. We break them down
into similar steps as above. See Figure 8.

Suppressing a face. We consider (m, c) ∈ N .

1. From this point on, we use the reverse orientation Õ.

2. We consider the lightest geodesic γ from the unique corner of f1 to c+.

3. We denote by d0 the unique edge incident to f1. We slit, slide, sew along γ from the
unique corner of f1 to c as described in Section 3.1, while furthermore matching
the unmatched light side of the first edge with d0.

4. We set Ψ−(m, c) := (m̃, ṽ, ẽ), where m̃ is the resulting map, ẽ is the edge correspond-
ing to the unmatched dark side of the final edge of γ, and ṽ is the origin of γ.
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ÑN

c

ẽ
ṽ
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ṽ

γ
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Adding a face. We consider (m̃, ṽ, ẽ) ∈ Ñ .

1. From this point on, we use the orientation O.

2. We consider the lightest geodesic γ̃ from the corner cẽ preceding ẽ to ṽ.

3. We slit m̃ along γ̃, entering from cẽ and stopping at ṽ, without disconnecting the
map at ṽ, slide by one unit, and sew back as before. Now the unmatched dark side
of the final edge creates a loop enclosing an extra face, which we denote by f1 and
mark at its unique corner.

4. We replace ℓ̃1 with a corner c, let m be the resulting map, and set Ψ+(m̃, ṽ, ẽ) := (m, c).

Theorem 6. The mappings Ψ− : N → Ñ and Ψ+ : Ñ → N are well defined and inverse
bijections.
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