SLIT-SLIDE-SEW BIJECTIONS

Jérémie BETTINELLI

A plane map is

the embedding of a finite connected graph (possibly with multiple edges and loops) into the sphere, considered up to orientation-preserving homeomorphisms.

A plane map is

the embedding of a finite connected graph (possibly with multiple edges and loops) into the sphere, considered up to orientation-preserving homeomorphisms.

something else.

A plane map is

the embedding of a finite connected graph (possibly with multiple edges and loops) into the sphere, considered up to orientation-preserving homeomorphisms.

something else.

Previously

Transfer

A plane map is bipartite if

each of its faces has an even degree.

Previously

Transfer

A plane map is bipartite if

each of its faces has an even degree.

every cycle has even length.

Previously

Transfer

A plane map is bipartite if

each of its faces has an even degree.

every cycle has even length.

Previously

Transfer

A plane map is bipartite if

each of its faces has an even degree.

every cycle has even length.

A plane map is quasibipartite if

it has two faces of odd degree and all other faces of even degree.

A plane map is quasibipartite if

nents

Tutte's formula of slicings

For $\boldsymbol{a} = (a_1, \dots, a_r) \in \mathbb{N}^r$, define the following.

- M(a): number of plane maps with *r* numbered faces f_1, \ldots, f_r of respective degrees a_1, \ldots, a_r , with a marked corner per face.
- $E(\mathbf{a}) := \frac{1}{2} \sum_{i=1}^{r} a_i$: numbers of edges of maps of type \mathbf{a} .
- V(a) := E(a) r + 2: numbers of vertices of maps of type a.

Theorem (Formula of slicings, [Tutte '62])

For bipartite or quasibipartite maps (i.e., at most two odd a_i's),

$$M(\boldsymbol{a}) = \frac{(E(\boldsymbol{a}) - 1)!}{V(\boldsymbol{a})!} \prod_{i=1}^{r} \alpha(a_i), \quad \text{where} \quad \alpha(x) := \frac{x!}{\lfloor x/2 \rfloor! \lfloor (x-1)/2 \rfloor!}.$$

transfer bijections [Cori '75], encoding by blossoming trees [Schaeffer '97], Bouttier–Di Francesco–Guitter bijection [Collet–Fusy '14]

Jérémie BETTINELLI

Slit-slide-sew bijections for bipartite and quasibipartite plane maps

How to grow a bipartite map

Proposition (Adding two corners to the same face) Let $\mathbf{a} = (a_1, ..., a_r)$ be an *r*-tuple of positive even integers and let $\tilde{\mathbf{a}} = (\tilde{a}_1, ..., \tilde{a}_r) := (a_1 + 2, a_2, ..., a_r)$. Then,

 $(a_1+1)(a_1+2) E(\boldsymbol{a}) M(\boldsymbol{a}) = \lfloor \tilde{a}_1/2 \rfloor \lfloor (\tilde{a}_1-1)/2 \rfloor V(\tilde{\boldsymbol{a}}) M(\tilde{\boldsymbol{a}}).$

Proposition (Adding one corner to each of two different faces) Let $\mathbf{a} = (a_1, ..., a_r)$ be an *r*-tuple of positive even integers and let $\tilde{\mathbf{a}} = (\tilde{a}_1, ..., \tilde{a}_r) := (a_1 + 1, a_2 + 1, a_3, ..., a_r)$. Then,

 $(a_1+1)(a_2+1)E(\boldsymbol{a})M(\boldsymbol{a}) = \lfloor \tilde{a}_1/2 \rfloor \lfloor \tilde{a}_2/2 \rfloor V(\tilde{\boldsymbol{a}})M(\tilde{\boldsymbol{a}}).$

except for $a_i = 1$, recover Tutte's formula of slicings by subsequent applications from the initial condition $M(2,...,2) = 2^{r-1}(r-1)!$

Jérémie BETTINELLI

Previously

Related works

- [Cori '75, '76]. Counting by transferring one degree from a face to a neighboring one.
- [Louf '18]. Bijections interpreting KP hierarchy formulas, which strongly rely on the mechanism of sliding along a local path. Also possible disconnection of the map resulting in two output maps, which corresponds to quadratic formulas.

Previously

Transfer

Today's specials

Jérémie BETTINELLI

Slit-slide-sew bijections for bipartite and quasibipartite plane maps

Previously

Transfer

Today's specials

Jérémie BETTINELLI

Slit-slide-sew bijections for bipartite and quasibipartite plane maps

Previously

Transfer

Today's specials

Jérémie BETTINELLI

Slit-slide-sew bijections for bipartite and quasibipartite plane maps

Previously

Transfer

Today's specials

MENU BEMANDER AND GENERALABANAON OF
ПЛИ ИЛИЛИА САМИЛЛЕНИИ ОПОЛЕНИИО
MENU AN BAGA. AA AS NOA AMAA
MENU ANSMER TO BAGE AND EVERY
QUESTION ANDREA EMER ASKED DURING
ALEA FROM 2010 TO 2015, A MENU THAT
ONLY ANDREA CAN ONDERSMAND

Jérémie BETTINELLI

Previously

Transfer

Today's specials

MENU REMANDER AND GENERALAZATION OF THE REPACOS CONPLACATED BASECTIONS
MENU UN EAGH, NA NN NOH HEAT Compligated
MENU ANSWER DO EAGH AND EMERN OMBRONON ANDRBA BMBR ASKRD DARANG
AUEN ARON 2010 NO 2015, A MENU AUAN ONLY ANDREA GAN UNDERSTAND
angu fagadi ata gagadigadi

Jérémie BETTINELLI

Slit-slide-sew bijections for bipartite and quasibipartite plane maps

Transfer

Preliminary facts

Proposition

In a bipartite map, no edge can be parallel to a vertex. More precisely, for any given face and any given vertex, exactly half of the half-edges incident to the face are directed toward the vertex, the other half being directed away from the vertex.

Transfer

Preliminary facts

Proposition

In a quasibipartite map, a cycle has odd length if and only if it separates the two odd-degree faces. Moreover, for any given vertex v, among the a half-edges incident to an odd-degree face, exactly one is parallel to v, (a - 1)/2 are directed toward v and (a - 1)/2 are directed away from v.

In	tr	0	d	u	С	ti	0	n	
		6	•	24	24	8			

$$\boldsymbol{a} = (a_1, \ldots, a_r) \in 2\mathbb{N}^r$$
 $\tilde{\boldsymbol{a}} = (\tilde{a}_1, \ldots, \tilde{a}_r) := (a_1 + 2, a_2, \ldots, a_r)$

ents
$$(a_1+1)(a_1+2)E(\boldsymbol{a})M(\boldsymbol{a}) = \lfloor \tilde{a}_1/2 \rfloor \lfloor (\tilde{a}_1-1)/2 \rfloor V(\tilde{\boldsymbol{a}}) M(\tilde{\boldsymbol{a}})$$

In	tro	du	cti	on
	86		16	

$$\boldsymbol{a} = (a_1, \ldots, a_r) \in 2\mathbb{N}^r$$
 $\tilde{\boldsymbol{a}} = (\tilde{a}_1, \ldots, \tilde{a}_r) := (a_1 + 2, a_2, \ldots, a_r)$

$$\underbrace{(a_1+1)(a_1+2)\underbrace{\mathcal{E}(\boldsymbol{a})}_{\text{edge}}M(\boldsymbol{a}) = \lfloor \tilde{a}_1/2 \rfloor \lfloor (\tilde{a}_1-1)/2 \rfloor V(\tilde{\boldsymbol{a}}) M(\tilde{\boldsymbol{a}})$$

Int	ro	duc	ctio	n
			8	

Transfer

$$oldsymbol{a}=(a_1,\ldots,a_r)\in 2\mathbb{N}^r$$
 $oldsymbol{\tilde{a}}=(ilde{a}_1,\ldots, ilde{a}_r)centcolor=(a_1+2,a_2,\ldots,a_r)$

$$\underbrace{(a_1+1)}_{\text{corner}}(a_1+2)\underbrace{E(a)}_{\text{edge}}M(a) = \lfloor \tilde{a}_1/2 \rfloor \lfloor (\tilde{a}_1-1)/2 \rfloor V(\tilde{a}) M(\tilde{a})$$

In	tro	du	cti	on
	86		16	

$$oldsymbol{a}=(a_1,\ldots,a_r)\in 2\mathbb{N}^r$$
 $oldsymbol{\tilde{a}}=(ilde{a}_1,\ldots, ilde{a}_r)centcolor=(a_1+2,a_2,\ldots,a_r)$

$$\underbrace{(a_1+1)}_{\text{corner c in } f_1} \underbrace{(a_1+2)}_{\substack{\text{corner c in } f_1}} \underbrace{E(\mathbf{a})}_{\substack{\text{corner edge}}} M(\mathbf{a}) = \lfloor \tilde{a}_1/2 \rfloor \lfloor (\tilde{a}_1-1)/2 \rfloor V(\tilde{\mathbf{a}}) M(\tilde{\mathbf{a}})$$

Adding two corners to the same face in a bipartite map

Slit-slide-sew bijections for bipartite and quasibipartite plane maps

$$\mathbf{a} = (a_1, \dots, a_r) \in 2\mathbb{N}^r \qquad \tilde{\mathbf{a}} = (\tilde{a}_1, \dots, \tilde{a}_r) := (a_1 + 2, a_2, \dots, a_r)$$

$$\underbrace{(a_1 + 1)}_{corner} \underbrace{(a_1 + 2)}_{oth, corner} \underbrace{E(\mathbf{a})}_{oth, corner} \underbrace{M(\mathbf{a})}_{half-edge h} = \underbrace{[\tilde{a}_1/2]}_{half-edge h} \underbrace{[(\tilde{a}_1 - 1)/2]}_{vertex v} \underbrace{V(\tilde{\mathbf{a}})}_{vertex v} \underbrace{M(\tilde{\mathbf{a}})}_{vertex v}$$

Adding two corners to the same face in a bipartite map

$$\mathbf{a} = (a_1, \dots, a_r) \in 2\mathbb{N}^r \qquad \mathbf{\ddot{a}} = (\ddot{a}_1, \dots, \ddot{a}_r) := (a_1 + 2, a_2, \dots, a_r)$$

$$\underbrace{a = (a_1 + 1)(a_1 + 2) E(a) M(a)}_{c \text{ in } f_1} = \underbrace{[a_1/2]}_{half-edge h} \underbrace{[(\ddot{a}_1 - 1)/2]}_{half-edge h' \text{ vertex } v} V(\ddot{a}) M(\ddot{a})$$

$$\underbrace{(a_1 + 1)(a_1 + 2) E(a) M(a)}_{c \text{ in } f_1} = \underbrace{[a_1/2]}_{half-edge h} \underbrace{[(\ddot{a}_1 - 1)/2]}_{of f_1 \text{ toward } v} V(\ddot{a}) M(\ddot{a})$$

$$\underbrace{(a_1 + 1)(a_1 + 2) E(a) M(a)}_{of f_1 \text{ toward } v} = \underbrace{[a_1/2]}_{half-edge h \text{ oth half-edge } h' \text{ vertex } v}$$

Slit-slide-sew bijections for bipartite and quasibipartite plane maps

Introduction	Previously	Transfer
*****	666666	*******

Introduction	Previously	Transfer
*****	666666	*******

Introduction	Previously	Transfer
*****	666666	*******

Consider the rightmost geodesic from \vec{e} toward c'.

Jérémie BETTINELLI

Slit-slide-sew bijections for bipartite and quasibipartite plane maps

Introduction	Previously	Transfer
*****	666666	*******

Do "the same" with c instead of c'.

Jérémie BETTINELLI

Introduction	Previously	Transfer
666666	666666	

Introduction	Previously	Transfer
666666	664666	******

Introduction	Previously	Transfer
666666	666666	*******

Sew! And mark v, h and h'.

Transfer

Pinched case

Slit-slide-sew bijections for bipartite and quasibipartite plane maps

Transfer

Pinched case

Jérémie BETTINELLI

Slit-slide-sew bijections for bipartite and quasibipartite plane maps
Transfer

Pinched case

Jérémie BETTINELLI

Slit-slide-sew bijections for bipartite and quasibipartite plane maps

Transfer

Pinched case

Jérémie BETTINELLI

Slit-slide-sew bijections for bipartite and quasibipartite plane maps

Slit-slide-sew bijections for bipartite and quasibipartite plane maps

Slit-slide-sew bijections for bipartite and quasibipartite plane maps

Previously

Transfer

Pinched case

Sew! And mark v, h and h'.

Jérémie BETTINELLI Slit-slide-sew bijections for bipartite and quasibipartite plane maps

$$\tilde{\boldsymbol{a}} := (a_1, \ldots, a_r) \in 2\mathbb{N}^r \qquad \qquad \tilde{\boldsymbol{a}} := (a_1 + 1, a_2 + 1, a_3, \ldots, a_r)$$

$$(a_1+1)(a_2+1)E(\boldsymbol{a})M(\boldsymbol{a}) = \lfloor \tilde{a}_1/2 \rfloor \quad \lfloor \tilde{a}_2/2 \rfloor \quad V(\tilde{\boldsymbol{a}}) M(\tilde{\boldsymbol{a}})$$

V

Previously

$$\tilde{\boldsymbol{a}} := (a_1, \ldots, a_r) \in 2\mathbb{N}^r \qquad \tilde{\boldsymbol{a}} := (a_1 + 1, a_2 + 1, a_3, \ldots, a_r)$$

$$(a_1+1)(a_2+1)\underbrace{E(\boldsymbol{a})}_{ ext{edge}}M(\boldsymbol{a}) = \lfloor \tilde{a}_1/2 \rfloor \quad \lfloor \tilde{a}_2/2 \rfloor \quad V(\tilde{\boldsymbol{a}}) \ M(\tilde{\boldsymbol{a}})$$

Adding one corner to two faces in a bipartite map

$$\underbrace{a_1 = (a_1, \dots, a_r) \in 2\mathbb{N}^r}_{\substack{(a_1 + 1) \\ (a_2 + 1) \\ edge}} \underbrace{\tilde{a} := (a_1 + 1, a_2 + 1, a_3, \dots, a_r)}_{\substack{(a_1 + 1) \\ edge}} \underbrace{\tilde{a} := (a_1 + 1, a_2 + 1, a_3, \dots, a_r)}_{\substack{(a_1 + 1) \\ edge}} \underbrace{\tilde{a} := (a_1 + 1, a_2 + 1, a_3, \dots, a_r)}_{\substack{(a_1 + 1) \\ edge}} \underbrace{\tilde{a} := (a_1 + 1, a_2 + 1, a_3, \dots, a_r)}_{\substack{(a_1 + 1) \\ edge}}$$

Jérémie BETTINELLI

Slit-slide-sew bijections for bipartite and quasibipartite plane maps

$$\underbrace{a_1 = (a_1, \dots, a_r) \in 2\mathbb{N}^r}_{V \quad (a_1 + 1)} \underbrace{(a_2 + 1)}_{corner} \underbrace{E(a)}_{edge} M(a) = \begin{bmatrix} \tilde{a}_1/2 \end{bmatrix} \begin{bmatrix} \tilde{a}_2/2 \end{bmatrix} V(\tilde{a}) M(\tilde{a})$$

$$V \quad (\tilde{a}) \quad (\tilde{a)) \quad (\tilde{a}) \quad (\tilde{a$$

$$\underbrace{a_1 + 1}_{corner} (a_1 + 1, a_2 + 1, a_3, \dots, a_r) \in 2\mathbb{N}^r \qquad \tilde{a} := (a_1 + 1, a_2 + 1, a_3, \dots, a_r)$$

$$\underbrace{(a_1 + 1)}_{corner} (a_2 + 1) \underbrace{E(a)}_{edge} M(a) = \lfloor \tilde{a}_1/2 \rfloor \qquad \lfloor \tilde{a}_2/2 \rfloor \qquad \underbrace{V(\tilde{a})}_{vertex \ v} M(\tilde{a})$$

$$\underbrace{F_1 + 1}_{v} (f_1 + 1) \underbrace{F_2 + 1}_{vertex \ v} (f_$$

$$\underbrace{a_1 + 1}_{corner} (a_1 + 1, a_2 + 1, a_3, \dots, a_r) \in 2\mathbb{N}^r \qquad \tilde{a} := (a_1 + 1, a_2 + 1, a_3, \dots, a_r)$$

$$\underbrace{(a_1 + 1)}_{corner} (a_2 + 1) \underbrace{E(a)}_{otin f_2} M(a) = \underbrace{[\tilde{a}_1/2]}_{half-edge h} \underbrace{[\tilde{a}_2/2]}_{laff-edge h'} \underbrace{V(\tilde{a})}_{vertex v} M(\tilde{a})$$

$$\underbrace{f_1 \circ f_2 \circ f_2 \circ f_1}_{f_1 \circ f_2} \underbrace{f_1 \circ f_2}_{h' \to v} \underbrace{f_1 \circ f_2}_{h' \to v}$$

Slit-slide-sew bijections for bipartite and quasibipartite plane maps

Slit-slide-sew bijections for bipartite and quasibipartite plane maps

Previously

Transfer

Today's specials

Jérémie BETTINELLI

Slit-slide-sew bijections for bipartite and quasibipartite plane maps

Previously

Transfer

Today's specials

Jérémie BETTINELLI

Slit-slide-sew bijections for bipartite and quasibipartite plane maps

Transfer

How to transfer a corner

Proposition (from a face of degree at least 2)

Let
$$m{a}=(a_1,\ldots,a_{r+1})\in\mathbb{N}^{r+1}$$
 with $a_{r+1}\geq$ 2 such that

either every a_i is even;

• or only a_{r+1} and one other a_i are odd. Let $\tilde{a} = (\tilde{a}_1, ..., \tilde{a}_{r+1}) := (a_1 + 1, a_2, ..., a_r, a_{r+1} - 1)$. Then,

$$(a_1+1)\left\lfloor a_{r+1}/2 \right\rfloor M(\boldsymbol{a}) = \left\lfloor \tilde{a}_1/2 \right\rfloor (\tilde{a}_{r+1}+1) M(\tilde{\boldsymbol{a}}).$$

Proposition (from a degree 1-face)

Let $\mathbf{a} = (a_1, \dots, a_r, \mathbf{1})$ be an r + 1-tuple of positive integers with two odd coordinates and let $\tilde{\mathbf{a}} = (\tilde{a}_1, \dots, \tilde{a}_r) := (a_1 + 1, a_2, \dots, a_r)$. Then,

$$(a_1+1) M(\boldsymbol{a}) = \lfloor \tilde{a}_1/2 \rfloor V(\tilde{\boldsymbol{a}}) M(\tilde{\boldsymbol{a}}).$$

$$\tilde{a} := (a_1, \dots, a_{r+1})$$
 $\tilde{a} := (a_1 + 1, a_2, \dots, a_r, a_{r+1} - 1)$

$$(a_1+1) \quad \lfloor a_{r+1}/2 \rfloor \quad M(\boldsymbol{a}) = \quad \lfloor \tilde{a}_1/2 \rfloor \quad (\tilde{a}_{r+1}+1) \, M(\tilde{\boldsymbol{a}})$$

Transferring from a face of degree at least 2

Slit-slide-sew bijections for bipartite and quasibipartite plane maps

Transfer

Transferring from a face of degree at least 2

Jérémie BETTINELLI

Slit-slide-sew bijections for bipartite and quasibipartite plane maps

Transfer

Transferring from a face of degree at least 2

Consider the corner h'_0 delimited by h' and its predecessor in f_{r+1} .

Jérémie BETTINELLI

Slit-slide-sew bijections for bipartite and quasibipartite plane maps

Transfer

Transferring from a face of degree at least 2

Consider the leftmost geodesic from h'_0 toward c.

Jérémie BETTINELLI

Slit-slide-sew bijections for bipartite and quasibipartite plane maps

Transfer

Transferring from a face of degree at least 2

Slit!

Jérémie BETTINELLI

Slit-slide-sew bijections for bipartite and quasibipartite plane maps

Transfer

Transferring from a face of degree at least 2

Slide!

Jérémie BETTINELLI

Slit-slide-sew bijections for bipartite and quasibipartite plane maps

Transfer

Transferring from a face of degree at least 2

Sew! And mark h and c'.

Jérémie BETTINELLI

Slit-slide-sew bijections for bipartite and quasibipartite plane maps

Previously

Transfer

Conversely

Jérémie BETTINELLI

Slit-slide-sew bijections for bipartite and quasibipartite plane maps

Previously

Transfer

Conversely

Consider the corner h_0 delimited by h and its successor in f_1 .

Jérémie BETTINELLI

Slit-slide-sew bijections for bipartite and quasibipartite plane maps

Previously

Transfer

Conversely

Consider the rightmost geodesic from h_0 toward c'.

Jérémie BETTINELLI

Slit-slide-sew bijections for bipartite and quasibipartite plane maps
Introduction

Previously

Transfer

Conversely

Slit! Slide! Sew! And mark h' and c.

Jérémie BETTINELLI

Slit-slide-sew bijections for bipartite and quasibipartite plane maps

Proof

Proof

Proof

Proof

Proof

С

Previously

Proof

Proof

<

Previously

Proof

<

Previously

Proof

<

Previously

Proof

Proof

С

Previously

Proof

С

Previously

Proof

Proof

Proof

Proof

Proof

С

Previously

Proof

Proof

Proof

We need to see that the leftmost geodesic from h'_0 toward *c* becomes enthe rightmost geodesic from h_0 toward *c'*.

<

Proof

We need to see that the leftmost geodesic from h'_0 toward *c* becomes enthe rightmost geodesic from h_0 toward *c'*.

<

Proof

We need to see that the leftmost geodesic from h'_0 toward *c* becomes enthe rightmost geodesic from h_0 toward *c'*.

<

Proof

С

Previously

Proof

Proof

Proof

Proof

Proof

Proof

Transferring from a face of degree 1

$$\boldsymbol{a}=(a_1,\ldots,a_r,\mathbf{1})$$

$$\tilde{\boldsymbol{a}} := (\boldsymbol{a}_1 + \boldsymbol{1}, \boldsymbol{a}_2, \dots, \boldsymbol{a}_r)$$

$$(a_1+1) M(\boldsymbol{a}) = [\tilde{a}_1/2] V(\tilde{\boldsymbol{a}}) M(\tilde{\boldsymbol{a}})$$

Transferring from a face of degree 1

$$\mathbf{a} = (a_1, \ldots, a_r, \mathbf{1})$$

$$\tilde{\boldsymbol{a}} := (\boldsymbol{a}_1 + \boldsymbol{1}, \boldsymbol{a}_2, \dots, \boldsymbol{a}_r)$$

$$\underbrace{(a_{1}+1)}_{corner} M(\mathbf{a}) = \lfloor \tilde{a}_{1}/2 \rfloor \quad V(\tilde{\mathbf{a}}) \ M(\tilde{\mathbf{a}})$$
ents
$$\underbrace{(f_{1}+1)}_{r} M(\mathbf{a}) = \lfloor \tilde{a}_{1}/2 \rfloor \quad V(\tilde{\mathbf{a}}) \ M(\tilde{\mathbf{a}})$$

$$\underbrace{(f_{1}+1)}_{r} (f_{1}+1)$$

Transferring from a face of degree 1

 $a = (a_1, \ldots, a_r, 1)$

$$\tilde{\boldsymbol{a}} := (\boldsymbol{a}_1 + \boldsymbol{1}, \boldsymbol{a}_2, \dots, \boldsymbol{a}_r)$$

$$\underbrace{(a_{1}+1)}_{corner} M(\mathbf{a}) = \lfloor \tilde{a}_{1}/2 \rfloor \underbrace{V(\tilde{\mathbf{a}})}_{vertex v} M(\tilde{\mathbf{a}})$$
ents
$$\underbrace{(f_{1}, f_{1}, f_{1}$$

Transferring from a face of degree 1

 $a = (a_1, \ldots, a_r, 1)$

$$\tilde{\boldsymbol{a}} := (\boldsymbol{a}_1 + \boldsymbol{1}, \boldsymbol{a}_2, \dots, \boldsymbol{a}_r)$$

Transfer

Transferring from a face of degree 1

Jérémie BETTINELLI

Slit-slide-sew bijections for bipartite and quasibipartite plane maps

March 19, 2019

Transfer

Transferring from a face of degree 1

Jérémie BETTINELLI

Slit-slide-sew bijections for bipartite and quasibipartite plane maps

March 19, 2019
Transfer

Transferring from a face of degree 1

Jérémie BETTINELLI

Slit-slide-sew bijections for bipartite and quasibipartite plane maps

Transfer

Transferring from a face of degree 1

Jérémie BETTINELLI

Slit-slide-sew bijections for bipartite and quasibipartite plane maps

Transfer

Transferring from a face of degree 1

Jérémie BETTINELLI

Slit-slide-sew bijections for bipartite and quasibipartite plane maps

Transfer

Transferring from a face of degree 1

Jérémie BETTINELLI

Slit-slide-sew bijections for bipartite and quasibipartite plane maps

Transfer

ents

Previously

Transfer

Transfer

С

Transfer

Transfer

Transfer

Transfer

Transfer

Transfer

Transfer

Transfer

Transfer

Decomposition into transfer bijections

Slit-slide-sew bijections for bipartite and quasibipartite plane maps

Transfer

Transfer

Decomposition into transfer bijections

Slit-slide-sew bijections for bipartite and quasibipartite plane maps

Transfer

Decomposition into transfer bijections

Slit-slide-sew bijections for bipartite and quasibipartite plane maps

Transfer

Last question

$$\begin{aligned} \boldsymbol{a} &= (a_1, \dots, a_r) & \tilde{\boldsymbol{a}} &= (a_1 + 2, a_2, \dots, a_r) \\ & (a_1 + 1) (a_1 + 2) E(\boldsymbol{a}) M(\boldsymbol{a}) &= \lfloor \tilde{a}_1/2 \rfloor \lfloor (\tilde{a}_1 - 1)/2 \rfloor V(\tilde{\boldsymbol{a}}) M(\tilde{\boldsymbol{a}}) \end{aligned}$$

$$\begin{aligned} \boldsymbol{a} &= (a_1, \dots, a_r) & \tilde{\boldsymbol{a}} &= (a_1 + 1, a_2 + 1, a_3, \dots, a_r) \\ & (a_1 + 1) (a_2 + 1) E(\boldsymbol{a}) M(\boldsymbol{a}) &= \lfloor \tilde{a}_1/2 \rfloor \lfloor \tilde{a}_2/2 \rfloor V(\tilde{\boldsymbol{a}}) M(\tilde{\boldsymbol{a}}) \end{aligned}$$

$$\begin{aligned} \boldsymbol{a} &= (a_1, \dots, a_{r+1}) & \tilde{\boldsymbol{a}} &= (a_1 + 1, a_2, \dots, a_r, a_{r+1} - 1) \\ & (a_1 + 1) \lfloor a_{r+1}/2 \rfloor \, \boldsymbol{M}(\boldsymbol{a}) &= \lfloor \tilde{a}_1/2 \rfloor \, (\tilde{a}_{r+1} + 1) \, \boldsymbol{M}(\tilde{\boldsymbol{a}}) \end{aligned}$$

Still valid for quasibipartite maps! But...

- The edge may be parallel to the corners (and may be a loop).
- Not so clear to interpret the green terms.
- In an even degree face, 0 or 2 half-edges are parallel to a corner.
- No longer bip. or quasibip. when decomposing as transfer bij.

Jérémie BETTINELLI

Slit-slide-sew bijections for bipartite and quasibipartite plane maps

