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PORDIPISS IOPPO

Noncrossing partition

2
ol

Noncrossing partition: partition of the n-th roots of unity for some n > 1,
such that the convex hulls of its blocks are pairwise disjoint
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Noncrossing pair partition
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Almost sure convergence

Noncrossing pair partition: noncrossing partition whose blocks are all of

size exactly 2
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Lamination

Lamination: closed subset of the unit disk D consisting of a union of
chords whose intersections with the open unit disk are pairwise disjoint
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Hausdorff metric

The Hausdorff distance between
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where X©©) := {zeD : d(z,X) <e}. \ S
N

2

Endowed with the Hausdorff metric, the set of all closed subsets of D is
a compact metric space.
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The Brownian triangulation B [Aldous]
< Take a normalized Brownian excursion (et)o<¢<1-

% Fors, t € [0,1], declare s ~ t

wheneg=ce¢;= min e
SAt<r<svt

< The Brownian triangulation is

B = U [62i7rs7 eZiﬂt] ) 0 s t 1
st
A.s., Bis a closed subset of D and a continuous triangulation of D, that

is, each connected component of D \ B is an open Euclidean triangle
whose vertices belong to the unit circle.
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The Brownian triangulation B [Aldous]
< Take a normalized Brownian excursion (et)o<¢<1-
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[simulation by Igor Kortchemski]
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The theorems

Theorem (Curien—Kortchemski ’14, B. ’17)
Let P, be a uniform noncrossing partition of size n, seen as a
lamination. Then P, ﬂ B, for the Hausdorff topology.

Theorem (Curien—Kortchemski '14, B. ’17)
Let P, be a uniform noncrossing pair partition of size 2n, seen as a
lamination. Then B, ‘% B, for the Hausdorff topology.
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The theorems

Theorem (Curien—Kortchemski ’14, B. ’17)

Let P, be a uniform noncrossing partition of size n, seen as a

lamination. Then P, ﬂ B, for the Hausdorff topology.

Theorem (Curien—Kortchemski '14, B. ’17)

Let P, be a uniform noncrossing pair partition of size 2n, seen as a
(d)

lamination. Then P, ~— B, for the Hausdorff topology.
< setting proposed for uniform triangulations [Aldous '94]
< uniform dissections, non-crossing trees [Curien—Kortchemski "14]
< “stable” analogs [Kortchemski 12, Kortchemski—-Marzouk ’16]
recursive triangulations [Curien—Le Gall '11]
simply generated noncrossing part. [Kortchemski—Marzouk ’17]
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Uniformly sampled examples of size 100

\\-_—/

noncrossing partition noncrossing pair partition

[simulations by Igor Kortchemski]
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Kreweras complement

3 2

7 8
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Kreweras complement
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Kreweras complement

3 2

7 8
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IOPUUN POV

Operation 1: inserting a vertex at position k

Data: a noncrossing partition of size n and an index k € {0,1,...,2n}

DO
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IOPUUN POSOIIN

Operation 2: slicing at position k
Data: a noncrossing partition of size n and an index k € {0,1,...,2n}

VEY,
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Growing algorithm

Algorithm

@ Let Py be the only partition of size 1.
© Generate P, from P, as follows:

@ choose an integer k uniformly at random in {0,1,...,2n};
@ with probabilities 1/2 -1/2, set P,.1 to be obtained from Pp,
® either by inserting a vertex at position k,
® or by slicing at position k.

Jérémie BETTINELLI Convergence of uniform noncrossing partitions toward the Brownian triangulation January 17, 2019



Recursive construction
$4o444

Growing algorithm

Algorithm

@ Let Py be the only partition of size 1.
© Generate P, from P, as follows:

@ choose an integer k uniformly at random in {0,1,...,2n};
@ with probabilities 1/2 -1/2, set P,.1 to be obtained from Pp,

® either by inserting a vertex at position k,
® or by slicing at position K.

Proposition

Pn is a uniform noncrossing partition of size n. Moreover, seen as a
lamination, P, almost surely converges toward the Brownian
triangulation BB, for the Hausdorff topology.
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Inserting a chord in a noncrossing pair partition

Data: a noncrossing pair partition of size 2nanda k € {0,1,...,2n}

AN N
1\ \\/]\

/ /

inserting a short chord inserting a long chord
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Growing algorithm

Algorithm

@ Let P; be the only pair partition of size 2.

Q Generate P4 from P, as follows:
@ choose an integer k uniformly at random in {0,1,...,2n};
@ with probabilities 1/2 - 1/2, set P,.1 to be obtained from P, by
inserting at position k
® either a short chord,
® oralong chord.
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Growing algorithm

Algorithm

@ Let P; be the only pair partition of size 2.

Q Generate P4 from P, as follows:
@ choose an integer k uniformly at random in {0,1,...,2n};
@ with probabilities 1/2 - 1/2, set P, to be obtained from P, by
inserting at position k
® either a short chord,
® oralong chord.

Proposition

P, is a uniform noncrossing pair partition of size 2n. Moreover, seen as
a lamination, P, almost surely converges toward the Brownian
triangulation B, for the Hausdorff topology.
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Encoding a noncrossing partition by a Dyck path

< Take a noncrossing

x partition of size n.
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Encoding a noncrossing partition by a Dyck path

o < Take a noncrossing
partition of size n.

< Consider its Kreweras
complement.
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Encoding a noncrossing partition by a Dyck path

o < Take a noncrossing
partition of size n.

< Consider its Kreweras
complement.

< Assign label 0 to the
first block

Jérémie BETTINELLI Convergence of uniform noncrossing partitions toward the Brownian triangulation January 17, 2019



Introduction Recursive construction Encoding by a Dyck path Convergence in distribution Almost sure convergence
+<

Encoding a noncrossing partition by a Dyck path

/

< Take a noncrossing

@ partition of size n.
© . < Consider its Kreweras
complement.
< Assign label 0 to the
@ first block

< Recursively assign
label ¢ + 1 to each not
yet labeled neighbor
of a block labeled ¢.
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Encoding a noncrossing partition by a Dyck path

@ < Take a noncrossing
partition of size n.

@ @ 4 Consider its Kreweras
complement.

o < Assign label 0 to the
first block

< Recursively assign
label ¢ + 1 to each not
yet labeled neighbor
of a block labeled ¢.
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+<

Encoding a noncrossing partition by a Dyck path

@ < Take a noncrossing
partition of size n.
© Q) < Consider its Kreweras
complement.
©) < Assign label 0 to the
@ first block
< Recursively assign
label ¢ + 1 to each not
yet labeled neighbor
of a block labeled ¢.

©) ®

®
©,
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Encoding a noncrossing partition by a Dyck path

@
®©.©®

o
©) ®

® & O

Take a noncrossing
partition of size n.

Consider its Kreweras
complement.

Assign label 0 to the
first block

Recursively assign
label ¢ + 1 to each not
yet labeled neighbor
of a block labeled ¢.
Assign to each 2n-th

root of unity the label
of its block.
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Reverse mapping
@ @ @ < Take a 2n-step Dyck
@ - O path.
®, @

®
©

@ @
®@®®@

Jérémie BETTINELLI Convergence of uniform noncrossing partitions toward the Brownian triangulation January 17, 2019
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S+

Reverse mapping

@ @ @ < Take a 2n-step Dyck

@ @ path.

®, ® < Put two n-th roots of
unity in the same
® @) block when they share
a label that is smaller
@e © than all the labels on
an arc inbetween.
@ @

@ @
@@(@@@
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Encoding by a Dyck path
S+

Reverse mapping

@ @ @ < Take a 2n-step Dyck

@ path.

.® < Put two n-th roots of

@
©)
unity in the same
@/ @ block when they share

a label that is smaller
@) © than all the labels on
an arc inbetween.

® ®
@ @
@@(@@@
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Ead

Reverse mapping

@ @ @ < Take a 2n-step Dyck

@ @ path.

® ® < Put two n-th roots of
unity in the same
® @) block when they share
a label that is smaller
@ © than all the labels on

an arc inbetween.
@\__/@
® ®

@ @ @
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Encoding by a Dyck path
g

Reverse mapping

@ @ @ < Take a 2n-step Dyck

@ @ path.

< Put two n-th roots of
unity in the same
block when they share
a label that is smaller
than all the labels on
an arc inbetween.

¢ The Kreweras
complement is
obtained by the same

@’ ® method with “odd”

@ @ ® 2n-th roots of unity.
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g

Reverse mapping

< Take a 2n-step Dyck
path.

< Put two n-th roots of
unity in the same
block when they share
a label that is smaller
than all the labels on
an arc inbetween.

¢ The Kreweras
complement is
obtained by the same
method with “odd”
2n-th roots of unity.
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Convergence in distribution
+544

Uniform noncrossing partitions

follows the general strategy of [Curien—Kortchemski '14]

Let P, be a uniform noncrossing partition of size n.

<

)
\\

> Let L, : [0,1] — R4 be the encoding Dyck path (L,(k/2n): label of
the k-th 2n-th root of unity, and linear interpolation).

< By Kaigh’s theorem (conditioned version of Donsker),

Ln(8)> (d)
- (e .
( \/ﬁ 0<s<t ( S)0§S§1

< We apply Skorokhod’s theorem and assume a.s. convergence.

< By compactness, (P,), has accumulation points. Let P be one.

< We conclude by showing that P = B.
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Convergence in distribution
L e s ad

P=8B

Reminder
(5] . Q .
s~twhenes=e;= min e B :=|] ., [e%iTS g2int
s t SAt<r<svt r UsNt [ ’ ]

% As the local minimums of e on (0, 1) are distinct, if s ~ t with s < t,
we can find even sy, t, € {0,2,4,...,2n} such that s, < {5,

Sn tn Sn\ _ In .
on S 5—” and Ln<ﬁ) Ln(2n><[#’|{;—1]Ln.

2n

> The chord [w3" wh ] C Pp, so that [e?7S, €27!] C P. Thus B C P.

<\

> B is maximal for the inclusion relation, so that B = P.

A
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Uniform noncrossing pair partitions: first approach
simple bijection
noncrossing pair partitions of size 2n «» noncrossing partitions of size nJ

3 2 1
. - ,
; 0
6 9 3
778 ‘4
The corresponding laminations are at Hausdorff distance < 7 /n. ]
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Uniform noncrossing pair partitions: direct proof

< Take a noncrossing

—" \ partition of size 2n.

.{‘
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$oo4

Uniform noncrossing pair partitions: direct proof

< Take a noncrossing
partition of size 2n.

\ < Rotate the picture by
1 an angle of —x/2n.

[ ]
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Almost sure convergence

Recursive construction Encoding by a Dyck path Convergence in distribution
e % oo

Introduction

Uniform noncrossing pair partitions: direct proof

® ®® g;) ® <+ Tak(? anoncrossing

@ partition of size 2n.
®© < ©) < Rotate the picture by

) an angle of —x/2n.
< Encode the Kreweras

®
@ complement by its
© Dyck path.

@@; -@@
©®3a0@
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e AN " o004 e

Uniform noncrossing pair partitions: direct proof

® @ % Take a noncrossing
partition of size 2n.

@) Q < Rotate the picture by

an angle of —m/2n.

< Encode the Kreweras
complement by its
@ © Dyck path.

< The partition is a pair
® ® partition iff the Dyck
¢ path has no peaks at

o . . O odd times; we may
remove odd values.

® "o
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LA

Uniform noncrossing pair partitions: direct proof

D @ % Take a noncrossing
partition of size 2n.

@) Y < Rotate the picture by

an angle of —m/2n.

< Encode the Kreweras
complement by its
@ © Dyck path.

< The partition is a pair
O, / @D partition iff the Dyck
path has no peaks at
© . . 0 odd times; we may
- remove odd values.
@ *—

® < Divide by 2.
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Rémy’s bijection on binary trees

2 (2n+ 1)|{n-node bin. trees}| = (n+ 2) |{n+ 1-node bin. trees}|

Jérémie BETTINELLI Convergence of uniform noncrossing partitions toward the Brownian triangulation January 17, 2019



Introduction Recursive construction Encoding by a Dyck path Convergence in distribution Almost sure convergence
POSUON

Rémy’s bijection on binary trees

2 (2n+ 1) |{n-node bin. trees}| = (n+ 2) |{n+ 1-node bin. trees}|
d
edge
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POSUON

Rémy’s bijection on binary trees

2 (2n+ 1) |{n-node bin. trees}| = (n+ 2) |{n+ 1-node bin. trees}|
——— ——

edge leaf
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POSUON

Rémy’s bijection on binary trees

2 (2n+ 1) |{n-node bin. trees}| = (n+ 2) |{n+ 1-node bin. trees}|
~N—— ——

torr edge leaf
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4044

Rémy’s bijection on binary trees

2 (2n+ 1) |{n-node bin. trees}| = (n+ 2) |{n+ 1-node bin. trees}|
~N—— ——

torr edge leaf

< Start from a binary tree with a
marked edge and a mark ¢ (for left)
or r (for right).
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Almost sure convergence
4044

Rémy’s bijection on binary trees

2 (2n+ 1) |{n-node bin. trees}| = (n+ 2) |{n+ 1-node bin. trees}|
~N—— ——

torr edge leaf

< Start from a binary tree with a
marked edge and a mark ¢ (for left)
or r (for right).

< Add on the left or on the right of the

edge a new edge and mark the leaf
at its extremity.
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Almost sure convergence
AR A

Rémy’s bijection on plane trees

2 (2n+ 1) |{n-edge trees}| = (n+ 2) |{n + 1-edge trees}|
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Almost sure convergence
AR A

Rémy’s bijection on plane trees

2 (2n+1) |{n-edge trees}| = (n+ 2) |{n + 1-edge trees}|
———

corner
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Almost sure convergence
AR A

Rémy’s bijection on plane trees

2 (2n+1) |{n-edge trees}| = (n+ 2) |{n + 1-edge trees}|
——— ——

corner vertex
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AR A

Rémy’s bijection on plane trees

2 (2n+1) |{n-edge trees}| = (n+2) |{n + 1-edge trees}|
~N— ——

aorb corner vertex
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Almost sure convergence
AR A

Rémy’s bijection on plane trees

2 (2n+1) |{n-edge trees}| = (n+2) |{n + 1-edge trees}|
~N— ——

aorb corner vertex

29

if a
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Almost sure convergence
AR A

Rémy’s bijection on plane trees

2 (2n+1) |{n-edge trees}| = (n+2) |{n + 1-edge trees}|
~N— ——

aorb corner vertex

29

-~

if a if b
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Sobd

Rémy’s bijection on Dyck paths

2 (2n+1) |{2n-step paths}| = (n+ 2) |{2n + 2-step paths}|
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VTP OP VPPN N TS ER RS

Rémy’s bijection on Dyck paths

2 (2n+1) |{2n-step paths}| = (n+ 2) |{2n + 2-step paths}|
———

time
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bbb sed bbb . o PPN

Rémy’s bijection on Dyck paths

2 (2n+1) |{2n-step paths}| = (n+ 2) |[{2n + 2-step paths}|
—— ——
time time*

time*: time s such that, for all t > s, infs<,<; D(r) < D(t)
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bbb sed bbb . o PPN

Rémy’s bijection on Dyck paths

2 (2n+1) |{2n-step paths}| = (n+ 2) |{2n + 2-step paths}|
~— ——
aorb time time*

time*: time s such that, for all t > s, infs<,<; D(r) < D(t)
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bbb sed bbb . o PPN

Rémy’s bijection on Dyck paths

2 (2n+1) |{2n-step paths}| = (n+ 2) |{2n + 2-step paths}|
~— ——
aorb time time*

time*: time s such that, for all t > s, infs<,<; D(r) < D(t)
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bbb sed bbb . o PPN

Rémy’s bijection on Dyck paths

2 (2n+1) |{2n-step paths}| = (n+ 2) |{2n + 2-step paths}|
~— ——
aorb time time*
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Rémy’s algorithm on Dyck paths

Algorithm

@ Let Dy be the only 2-step Dyck path.
© Generate D, 1 from D, as follows:

@ choose a time k uniformly at random in {0,1,...,2n};
@ with probabilities 1/2 - 1/2, set the mark m to be a or b;
© set D,.1 as the image of (Dp, k, m) by Marchal’s bijection.
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Rémy’s algorithm on Dyck paths

Algorithm

@ Let Dy be the only 2-step Dyck path.
© Generate D, 1 from D, as follows:

@ choose a time k uniformly at random in {0,1,...,2n};
@ with probabilities 1/2 -1/2, set the mark m to be a or b;
© set D,.1 as the image of (Dp, k, m) by Marchal’s bijection.

Theorem (Marchal '03)
The path D, is a uniform 2n-step Dyck path. Moreover, after linear
interpolation,

Dn(2n s)>
e ) N a.s.
( V2n ) ocect (es)o<s<
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The algorithm on noncrossing partitions

K@Q BN N
Do

inserting a vertex slicing

< Our algorithm on noncrossing partitions is the transcription of
Marchal’s algorithm, so that the convergence of the rescaled
encoding Dyck path holds a.s. for this choice of sequence (Py)n.

< Same thing for the algorithm on noncrossing pair partitions.
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