lecursive construction

Encoding by a Dyck pa

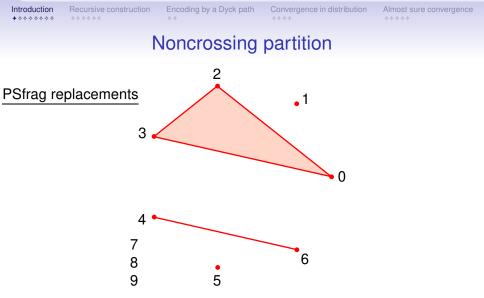
Convergence in distribution

Almost sure convergence

Convergence of uniform noncrossing partitions toward the Brownian triangulation

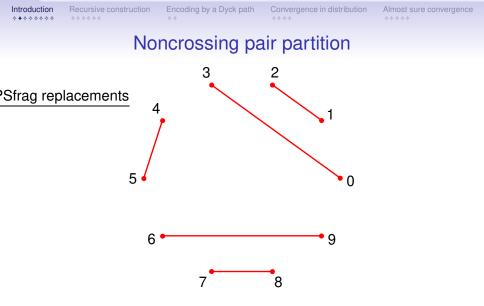
Jérémie BETTINELLI

January 17, 2019



Noncrossing partition: partition of the *n*-th roots of unity for some $n \ge 1$, such that the convex hulls of its blocks are pairwise disjoint

Jérémie BETTINELLI Convergence of uniform noncrossing partitions toward the Brownian triangulation January 17, 2019



Noncrossing pair partition: noncrossing partition whose blocks are all of size exactly 2

Jérémie BETTINELLI Convergence of uniform noncrossing partitions toward the Brownian triangulation January 17, 2019

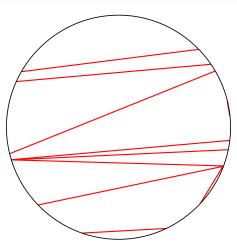
Recursive construction

Encoding by a Dyck path

Convergence in distribution

Almost sure convergence

Lamination



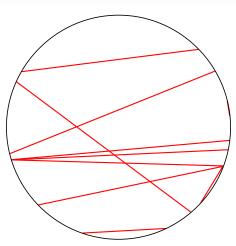
Lamination: closed subset of the unit disk $\overline{\mathbb{D}}$ consisting of a union of chords whose intersections with the open unit disk are pairwise disjoint

Recursive construction

Encoding by a Dyck path

Convergence in distribution

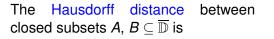
Almost sure convergence



Lamination: closed subset of the unit disk $\overline{\mathbb{D}}$ consisting of a union of chords whose intersections with the open unit disk are pairwise disjoint

Jérémie BETTINELLI Convergence of uniform noncrossing partitions toward the Brownian triangulation January 17, 2019

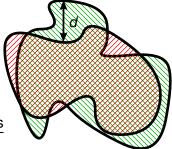
Hausdorff metric



Introduction

$$\inf \left\{ \varepsilon > 0 \ : \ A \subseteq B^{(\varepsilon)} \text{ and } B \subseteq A^{(\varepsilon)} \right\},$$

where
$$X^{(arepsilon)} := ig\{ z \in \overline{\mathbb{D}} \; extsf{PS}$$
 replacements



Endowed with the Hausdorff metric, the set of all closed subsets of $\overline{\mathbb{D}}$ is a compact metric space.

The Brownian triangulation is

$$\mathcal{B} := \bigcup_{\substack{\boldsymbol{s}_{\sim}^{e} t}} \left[\boldsymbol{e}^{2i\pi\boldsymbol{s}}, \boldsymbol{e}^{2i\pi\boldsymbol{t}} \right].$$

A.s., \mathcal{B} is a closed subset of $\overline{\mathbb{D}}$ and a continuous triangulation of $\overline{\mathbb{D}}$, that is, each connected component of $\overline{\mathbb{D}} \setminus \mathcal{B}$ is an open Euclidean triangle whose vertices belong to the unit circle.

The Brownian triangulation \mathcal{B} [Aldous]

♦ Take a normalized Brownian excursion $(e_t)_{0 \le t \le 1}$.

Introduction Recursive co

irsive construction

Convergence in distribution **** Almost sure convergence

Introduction

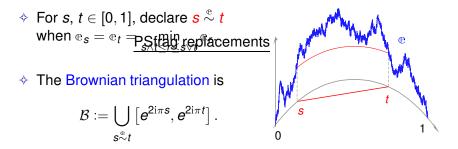
ncoding by a Dyck path

Convergence in distribution

Almost sure convergence

The Brownian triangulation \mathcal{B} [Aldous]

♦ Take a normalized Brownian excursion $(e_t)_{0 \le t \le 1}$.



A.s., \mathcal{B} is a closed subset of $\overline{\mathbb{D}}$ and a continuous triangulation of $\overline{\mathbb{D}}$, that is, each connected component of $\overline{\mathbb{D}} \setminus \mathcal{B}$ is an open Euclidean triangle whose vertices belong to the unit circle.

****** **

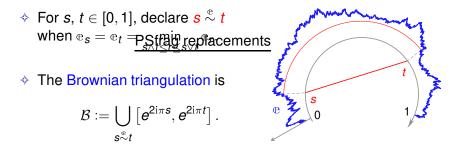
Introduction

Convergence in distribution

Almost sure convergence

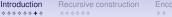
The Brownian triangulation \mathcal{B} [Aldous]

♦ Take a normalized Brownian excursion $(@_t)_{0 \le t \le 1}$.



A.s., \mathcal{B} is a closed subset of $\overline{\mathbb{D}}$ and a continuous triangulation of $\overline{\mathbb{D}}$, that is, each connected component of $\overline{\mathbb{D}} \setminus \mathcal{B}$ is an open Euclidean triangle whose vertices belong to the unit circle.

[simulation by Igor Kortchemski]



Encoding by a Dyck path * * Convergence in distribution

Almost sure convergence

The theorems

Theorem (Curien–Kortchemski '14, B. '17)

Let \mathcal{P}_n be a uniform noncrossing partition of size n, seen as a lamination. Then $\mathcal{P}_n \xrightarrow{(d)} \mathcal{B}$, for the Hausdorff topology.

Theorem (Curien–Kortchemski '14, B. '17)

Let $\tilde{\mathcal{P}}_n$ be a uniform noncrossing pair partition of size 2n, seen as a lamination. Then $\tilde{\mathcal{P}}_n \xrightarrow{(d)} \mathcal{B}$, for the Hausdorff topology.

Introduction Recursive construction

Encoding by a Dyck pa

Convergence in distributio

Almost sure convergence

The theorems

Theorem (Curien–Kortchemski '14, B. '17)

Let \mathcal{P}_n be a uniform noncrossing partition of size n, seen as a lamination. Then $\mathcal{P}_n \xrightarrow{(d)} \mathcal{B}$, for the Hausdorff topology.

Theorem (Curien–Kortchemski '14, B. '17)

Let $\tilde{\mathcal{P}}_n$ be a uniform noncrossing pair partition of size 2n, seen as a lamination. Then $\tilde{\mathcal{P}}_n \xrightarrow{(d)} \mathcal{B}$, for the Hausdorff topology.

- ♦ setting proposed for uniform triangulations [Aldous '94]
- or uniform dissections, non-crossing trees [Curien–Kortchemski '14]
- ♦ recursive triangulations [Curien–Le Gall '11]
- simply generated noncrossing part. [Kortchemski–Marzouk '17]

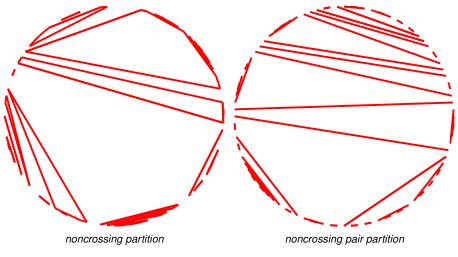
Recursive construction

Encoding by a Dyck path

Convergence in distribution

Almost sure convergence

Uniformly sampled examples of size 100



[simulations by Igor Kortchemski]

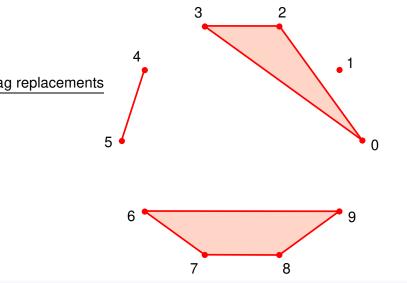
Jérémie BETTINELLI Convergence of uniform noncrossing partitions toward the Brownian triangulation January 17, 2019

Encoding by a Dyck path

Convergence in distribution

Almost sure convergence

Kreweras complement



Jérémie BETTINELLI Convergence of uniform noncrossing partitions toward the Brownian triangulation January 17, 2019

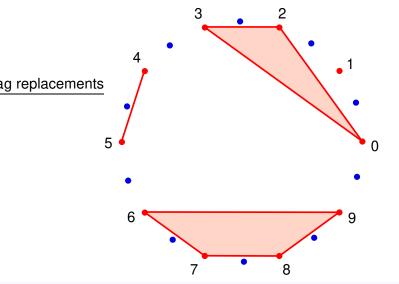
tion Recursive construction

Encoding by a Dyck path

Convergence in distribution

Almost sure convergence

Kreweras complement



Jérémie BETTINELLI Convergence of uniform noncrossing partitions toward the Brownian triangulation Janu

duction Recursive

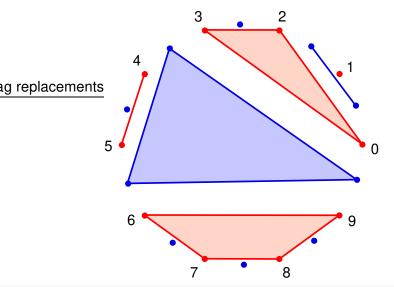
Recursive construction

Encoding by a Dyck path

Convergence in distribution

Almost sure convergence

Kreweras complement



Jérémie BETTINELLI Convergence of uniform noncrossing partitions toward the Brownian triangulation Jar

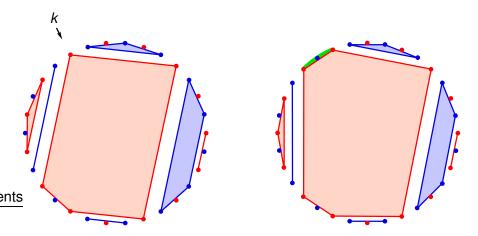
Encoding by a Dyck path

Convergence in distribution

Almost sure convergence

Operation 1: inserting a vertex at position k

Data: a noncrossing partition of size *n* and an index $k \in \{0, 1, ..., 2n\}$



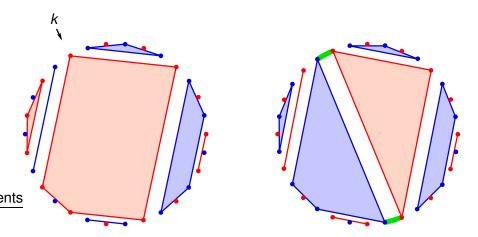
Encoding by a Dyck path

Convergence in distribution

Almost sure convergence

Operation 2: slicing at position k

Data: a noncrossing partition of size *n* and an index $k \in \{0, 1, ..., 2n\}$



Growing algorithm

Algorithm

• Let \mathcal{P}_1 be the only partition of size 1.

Generate \mathcal{P}_{n+1} from \mathcal{P}_n as follows: 2

- choose an integer k uniformly at random in $\{0, 1, \ldots, 2n\}$;
- with probabilities 1/2 1/2, set \mathcal{P}_{n+1} to be obtained from \mathcal{P}_n 2
 - either by inserting a vertex at position k.
 - or by slicing at position k.

Growing algorithm

Algorithm

• Let \mathcal{P}_1 be the only partition of size 1.

2 Generate \mathcal{P}_{n+1} from \mathcal{P}_n as follows:

- Choose an integer k uniformly at random in {0,1,...,2n};
 - with probabilities 1/2 1/2, set \mathcal{P}_{n+1} to be obtained from \mathcal{P}_n
 - either by inserting a vertex at position k,
 - or by slicing at position k.

Proposition

 \mathcal{P}_n is a uniform noncrossing partition of size n. Moreover, seen as a lamination, \mathcal{P}_n almost surely converges toward the Brownian triangulation \mathcal{B} , for the Hausdorff topology.

Inserting a chord in a noncrossing pair partition

Recursive construction

Data: a noncrossing pair partition of size 2n and a $k \in \{0, 1, ..., 2n\}$

inserting a short chord

inserting a long chord

Recursive construction

Encoding by a Dyck path

Convergence in distribution

Almost sure convergence

Growing algorithm

Algorithm

- Let $\tilde{\mathcal{P}}_1$ be the only pair partition of size 2.
- **2** Generate $\tilde{\mathcal{P}}_{n+1}$ from $\tilde{\mathcal{P}}_n$ as follows:
 - Choose an integer k uniformly at random in {0,1,...,2n};
 - with probabilities 1/2 1/2, set P
 _{n+1} to be obtained from P
 _n by inserting at position k
 - either a short chord,
 - or a long chord.

Recursive construction

Encoding by a Dyck path

Convergence in distribution

Almost sure convergence

Growing algorithm

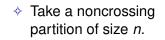
Algorithm

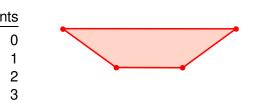
- Let $\tilde{\mathcal{P}}_1$ be the only pair partition of size 2.
- **2** Generate $\tilde{\mathcal{P}}_{n+1}$ from $\tilde{\mathcal{P}}_n$ as follows:
 - Choose an integer k uniformly at random in {0,1,...,2n};
 - with probabilities 1/2 1/2, set P
 _{n+1} to be obtained from P
 _n by inserting at position k
 - either a short chord,
 - or a long chord.

Proposition

 $\tilde{\mathcal{P}}_n$ is a uniform noncrossing pair partition of size 2n. Moreover, seen as a lamination, $\tilde{\mathcal{P}}_n$ almost surely converges toward the Brownian triangulation \mathcal{B} , for the Hausdorff topology.

Almost sure convergence in distribution Almost



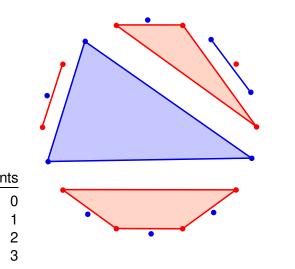


luction Recursive construction

Encoding by a Dyck path

Convergence in distribution

Almost sure convergence

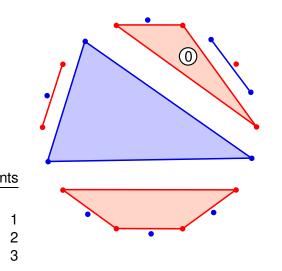


- Take a noncrossing partition of size n.
- Consider its Kreweras complement.

Encoding by a Dyck path

Convergence in distribution

Almost sure convergence

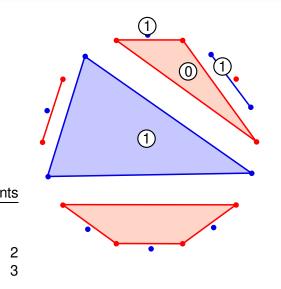


- Take a noncrossing partition of size n.
- Consider its Kreweras complement.
- Assign label 0 to the first block

Encoding by a Dyck path

Convergence in distribution

Almost sure convergence

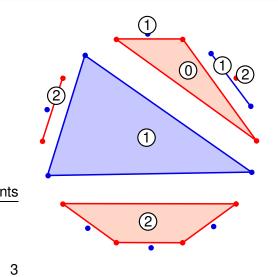


- Take a noncrossing partition of size n.
- Consider its Kreweras complement.
- Assign label 0 to the first block
- ♦ Recursively assign label ℓ + 1 to each not yet labeled neighbor of a block labeled ℓ.

Encoding by a Dyck path

Convergence in distribution

Almost sure convergence

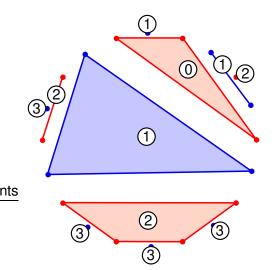


- Take a noncrossing partition of size n.
- Consider its Kreweras complement.
- Assign label 0 to the first block
- ♦ Recursively assign label ℓ + 1 to each not yet labeled neighbor of a block labeled ℓ.

Encoding by a Dyck path

Convergence in distribution

Almost sure convergence

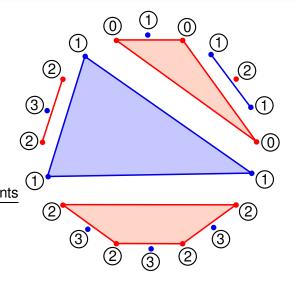


- Take a noncrossing partition of size n.
- Consider its Kreweras complement.
- Assign label 0 to the first block
- → Recursively assign label ℓ + 1 to each not yet labeled neighbor of a block labeled ℓ.

Encoding by a Dyck path

Convergence in distribution

Almost sure convergence



- Take a noncrossing partition of size n.
- Consider its Kreweras complement.
- Assign label 0 to the first block
- ♦ Recursively assign label ℓ + 1 to each not yet labeled neighbor of a block labeled ℓ.
- Assign to each 2*n*-th root of unity the label of its block.

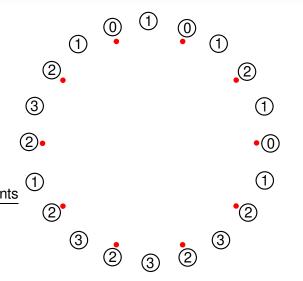
Recursive constructior

Encoding by a Dyck path

Convergence in distribution

Almost sure convergence

Reverse mapping



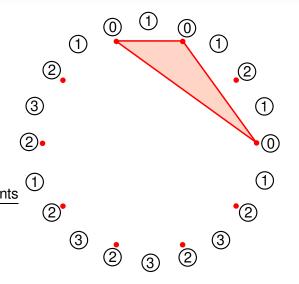
Take a 2*n*-step Dyck path.

Recursive constructio

Encoding by a Dyck path

Convergence in distribution

Almost sure convergence



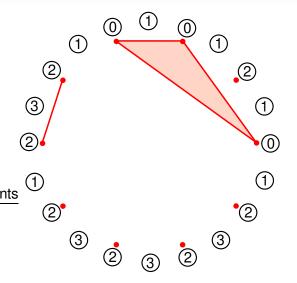
- Take a 2*n*-step Dyck path.
- Put two *n*-th roots of unity in the same block when they share a label that is smaller than all the labels on an arc inbetween.

Recursive constructio

Encoding by a Dyck path

Convergence in distribution

Almost sure convergence



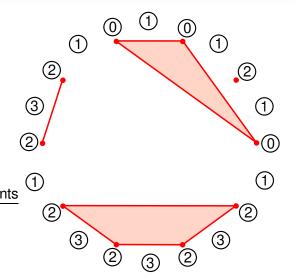
- Take a 2*n*-step Dyck path.
- Put two *n*-th roots of unity in the same block when they share a label that is smaller than all the labels on an arc inbetween.

Recursive constructio

Encoding by a Dyck path

Convergence in distribution

Almost sure convergence



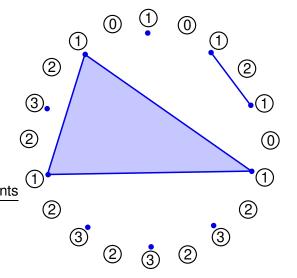
- Take a 2*n*-step Dyck path.
- Put two *n*-th roots of unity in the same block when they share a label that is smaller than all the labels on an arc inbetween.

Recursive constructior

Encoding by a Dyck path

Convergence in distribution

Almost sure convergence



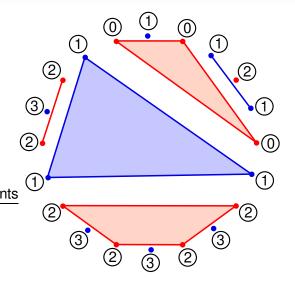
- ♦ Take a 2*n*-step Dyck path.
- Put two *n*-th roots of unity in the same block when they share a label that is smaller than all the labels on an arc inbetween.
- The Kreweras complement is obtained by the same method with "odd" 2*n*-th roots of unity.

Recursive construction

Encoding by a Dyck path

Convergence in distribution

Almost sure convergence



- Take a 2*n*-step Dyck path.
- Put two *n*-th roots of unity in the same block when they share a label that is smaller than all the labels on an arc inbetween.
- The Kreweras complement is obtained by the same method with "odd" 2*n*-th roots of unity.

Convergence in distribution

Almost sure convergence

Uniform noncrossing partitions

follows the general strategy of [Curien–Kortchemski '14]

- ♦ Let \mathcal{P}_n be a uniform noncrossing partition of size *n*.
- ♦ Let L_n: [0, 1] → ℝ₊ be the encoding Dyck path (L_n(k/2n): label of the k-th 2n-th root of unity, and linear interpolation).
- ♦ By Kaigh's theorem (conditioned version of Donsker),

$$\left(rac{L_n(s)}{\sqrt{2n}}
ight)_{0\leq s\leq 1} \xrightarrow{(d)} (\mathbb{P}_s)_{0\leq s\leq 1}.$$

- We apply Skorokhod's theorem and assume a.s. convergence.
- ♦ By compactness, $(P_n)_n$ has accumulation points. Let P be one.
- ♦ We conclude by showing that $\mathcal{P} = \mathcal{B}$.

Introduction Recursive construction Encoding by a Dyck path Almost sure convergence in distribution Almost sure convergence

 $\mathcal{P} = \mathcal{B}$

Reminder

- $s \stackrel{\text{\tiny e}}{\sim} t$ when $e_s = e_t = \min_{s \land t \le r \le s \lor t} e_r$ $\mathcal{B} := \bigcup_{s \stackrel{\text{\tiny e}}{\sim} t} \left[e^{2i\pi s}, e^{2i\pi t} \right]$
 - ♦ As the local minimums of e on (0, 1) are distinct, if $s \stackrel{e}{\sim} t$ with s < t, we can find even s_n , $t_n \in \{0, 2, 4, ..., 2n\}$ such that $s_n < t_n$,

$$\frac{s_n}{2n} \to s \,, \quad \frac{t_n}{2n} \to t \quad \text{and} \quad L_n \Big(\frac{s_n}{2n} \Big) = L_n \Big(\frac{t_n}{2n} \Big) < \min_{[\frac{s_n+1}{2n}, \frac{t_n-1}{2n}]} L_n \,.$$

♦ The chord [$ω_{2n}^{s_n}, ω_{2n}^{t_n}$] ⊆ P_n , so that [$e^{2i\pi s}, e^{2i\pi t}$] ⊆ P. Thus B ⊆ P.

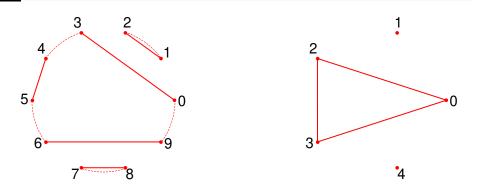
♦ \mathcal{B} is maximal for the inclusion relation, so that $\mathcal{B} = \mathcal{P}$.

Uniform noncrossing pair partitions: first approach

Convergence in distribution

simple bijection

noncrossing pair partitions of size $2n \leftrightarrow$ noncrossing partitions of size n



The corresponding laminations are at Hausdorff distance $\leq \pi/n$.

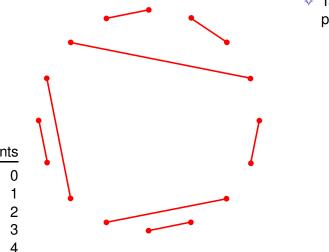
Jérémie BETTINELLI Convergence of uniform noncrossing partitions toward the Brownian triangulation January 17, 2019

Encoding by a Dyck path

Convergence in distribution

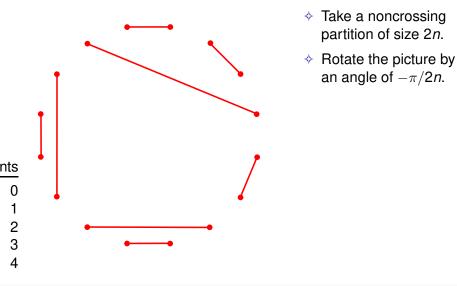
Almost sure convergence

Uniform noncrossing pair partitions: direct proof



Take a noncrossing partition of size 2n.

Uniform noncrossing pair partitions: direct proof



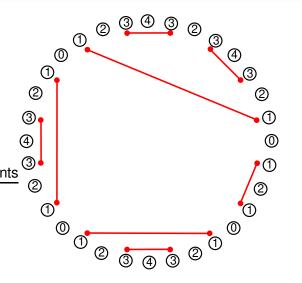
Recursive constructior

Encoding by a Dyck path

Convergence in distribution

Almost sure convergence

Uniform noncrossing pair partitions: direct proof



- Take a noncrossing partition of size 2n.
- ♦ Rotate the picture by an angle of -π/2n.
- Encode the Kreweras complement by its Dyck path.

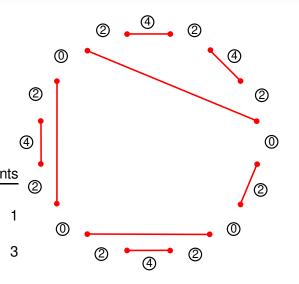
Recursive construction

Encoding by a Dyck path

Convergence in distribution

Almost sure convergence

Uniform noncrossing pair partitions: direct proof



- Take a noncrossing partition of size 2n.
- ♦ Rotate the picture by an angle of -π/2n.
- Encode the Kreweras complement by its Dyck path.
- The partition is a pair partition iff the Dyck path has no peaks at odd times; we may remove odd values.

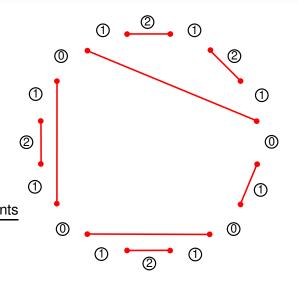
Recursive constructior

Encoding by a Dyck path

Convergence in distribution

Almost sure convergence

Uniform noncrossing pair partitions: direct proof



- Take a noncrossing partition of size 2n.
- ♦ Rotate the picture by an angle of -π/2n.
- Encode the Kreweras complement by its Dyck path.
- The partition is a pair partition iff the Dyck path has no peaks at odd times; we may remove odd values.

Divide by 2.

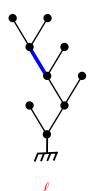
Encoding by a Dyck path

Convergence in distribution

Almost sure convergence

Rémy's bijection on binary trees

2 $(2n+1)|\{n\text{-node bin. trees}\}| = (n+2)|\{n+1\text{-node bin. trees}\}|$



ecursive construction

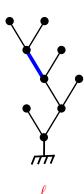
Encoding by a Dyck path

Convergence in distribution

Almost sure convergence

Rémy's bijection on binary trees

2 $\underbrace{(2n+1)}_{\text{edge}} |\{n\text{-node bin. trees}\}| = (n+2) |\{n+1\text{-node bin. trees}\}|$



ecursive construction

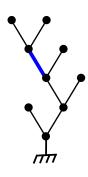
Encoding by a Dyck path

Convergence in distribution

Almost sure convergence

Rémy's bijection on binary trees

2 $\underbrace{(2n+1)}_{edge}$ $|\{n\text{-node bin. trees}\}| = \underbrace{(n+2)}_{leaf}$ $|\{n+1\text{-node bin. trees}\}|$



l



Recursive construction

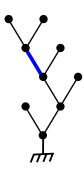
Encoding by a Dyck path

Convergence in distribution

Almost sure convergence

Rémy's bijection on binary trees

$$\underbrace{2(2n+1)}_{\ell \text{ or } r} |\{n \text{-node bin. trees}\}| = \underbrace{(n+2)}_{\text{leaf}} |\{n+1 \text{-node bin. trees}\}|$$



l

ments

lecursive construction

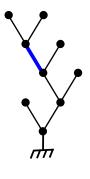
Encoding by a Dyck path

Convergence in distribution

Almost sure convergence

Rémy's bijection on binary trees

$$\underbrace{2(2n+1)}_{\ell \text{ or } r} |\{n \text{-node bin. trees}\}| = \underbrace{(n+2)}_{\text{leaf}} |\{n+1 \text{-node bin. trees}\}|$$



♦ Start from a binary tree with a marked edge and a mark ℓ (for *left*) or r (for *right*).

ecursive construction

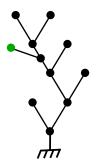
Encoding by a Dyck path

Convergence in distribution

Almost sure convergence

Rémy's bijection on binary trees

$$\underbrace{2(2n+1)}_{\ell \text{ or } r \text{ edge}} |\{n \text{-node bin. trees}\}| = \underbrace{(n+2)}_{\text{leaf}} |\{n+1 \text{-node bin. trees}\}|$$



- Start from a binary tree with a marked edge and a mark ℓ (for *left*) or r (for *right*).
- Add on the left or on the right of the edge a new edge and mark the leaf at its extremity.

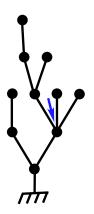
Encoding by a Dyck path

Convergence in distribution

Almost sure convergence

Rémy's bijection on plane trees

2 $(2n+1)|\{n-\text{edge trees}\}| = (n+2)|\{n+1-\text{edge trees}\}|$



ecursive construction

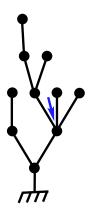
Encoding by a Dyck path

Convergence in distribution

Almost sure convergence

Rémy's bijection on plane trees

2 $(2n+1) |\{n \text{-edge trees}\}| = (n+2) |\{n+1 \text{-edge trees}\}|$



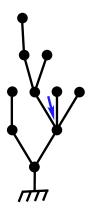
ecursive construction

Encoding by a Dyck path

Convergence in distribution

Almost sure convergence

2 $(2n+1)|\{n\text{-edge trees}\}| = (n+2)|\{n+1\text{-edge trees}\}|$ corner vertex



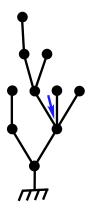
lecursive construction

Encoding by a Dyck path

Convergence in distribution

Almost sure convergence

$$\underbrace{2(2n+1)}_{\text{a or } b} |\{n \text{-edge trees}\}| = \underbrace{(n+2)}_{\text{vertex}} |\{n + 1 \text{-edge trees}\}|$$

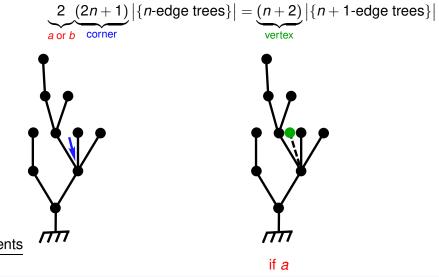


Recursive construction

Encoding by a Dyck path

Convergence in distribution

Almost sure convergence

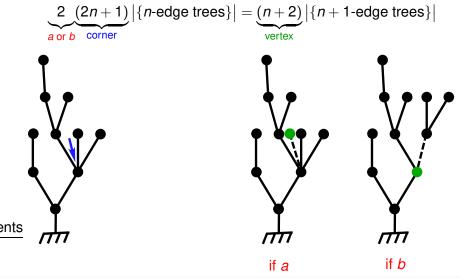


Recursive construction

Encoding by a Dyck path

Convergence in distribution

Almost sure convergence



ecursive construction

Encoding by a Dyck path

Convergence in distribution

Almost sure convergence

Rémy's bijection on Dyck paths

2 $(2n+1)|{2n-\text{step paths}}| = (n+2)|{2n+2-\text{step paths}}|$



Convergence in distribution

Almost sure convergence

Rémy's bijection on Dyck paths

2
$$(2n+1)$$
 $|\{2n \text{-step paths}\}| = (n+2) |\{2n+2 \text{-step paths}\}|$

Rémy's bijection on Dyck paths

2
$$\underbrace{(2n+1)}_{\text{time}} |\{2n \text{-step paths}\}| = \underbrace{(n+2)}_{\text{time}^*} |\{2n+2\text{-step paths}\}|$$

Recursive construction

Encoding by a Dyck path

Convergence in distribution

Almost sure convergence

Rémy's bijection on Dyck paths

$$\underbrace{2(2n+1)}_{\text{a or } b} |\{2n \text{-step paths}\}| = \underbrace{(n+2)}_{\text{time}^*} |\{2n+2 \text{-step paths}\}|$$

Recursive construction

Encoding by a Dyck path

Convergence in distribution

Almost sure convergence

Rémy's bijection on Dyck paths

$$\underbrace{2}_{\text{a or } b} \underbrace{(2n+1)}_{\text{time}} |\{2n \text{-step paths}\}| = \underbrace{(n+2)}_{\text{time}^*} |\{2n+2 \text{-step paths}\}|$$

Recursive construction

Encoding by a Dyck path

Convergence in distribution

Almost sure convergence

Rémy's bijection on Dyck paths

$$\underbrace{2(2n+1)}_{\text{a or } b} |\{2n \text{-step paths}\}| = \underbrace{(n+2)}_{\text{time}^*} |\{2n+2 \text{-step paths}\}|$$

Recursive construction

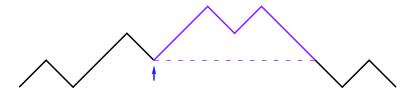
Encoding by a Dyck path

Convergence in distribution

Almost sure convergence

Rémy's bijection on Dyck paths

$$\underbrace{2(2n+1)}_{\text{a or } b} |\{2n \text{-step paths}\}| = \underbrace{(n+2)}_{\text{time}^*} |\{2n+2 \text{-step paths}\}|$$



Recursive construction

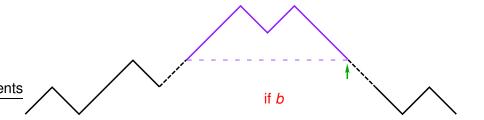
Encoding by a Dyck path

Convergence in distribution

Almost sure convergence

Rémy's bijection on Dyck paths

$$\underbrace{2(2n+1)}_{\text{a or } b} |\{2n \text{-step paths}\}| = \underbrace{(n+2)}_{\text{time}^*} |\{2n+2 \text{-step paths}\}|$$



Convergence in distribution

Almost sure convergence

Rémy's algorithm on Dyck paths

Algorithm

- Let D_1 be the only 2-step Dyck path.
- **2** Generate D_{n+1} from D_n as follows:
 - choose a time k uniformly at random in $\{0, 1, \dots, 2n\}$;
 - 2 with probabilities 1/2 1/2, set the mark m to be a or b;
 - Set D_{n+1} as the image of (D_n, k, m) by Marchal's bijection.

Almost sure convergence

Rémy's algorithm on Dyck paths

Algorithm

• Let D_1 be the only 2-step Dyck path.

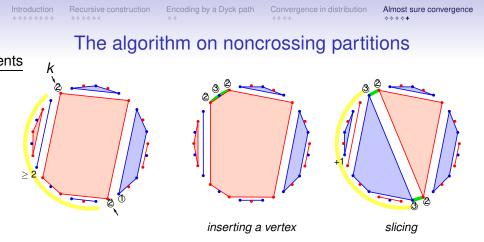
2 Generate D_{n+1} from D_n as follows:

- choose a time k uniformly at random in $\{0, 1, ..., 2n\}$;
- 2 with probabilities 1/2 1/2, set the mark m to be a or b;
- Set D_{n+1} as the image of (D_n, k, m) by Marchal's bijection.

Theorem (Marchal '03)

The path D_n is a uniform 2n-step Dyck path. Moreover, after linear interpolation,

$$\left(\frac{D_n(2ns)}{\sqrt{2n}}\right)_{0\leq s\leq 1}
ightarrow ({}^{\scriptscriptstyle \oplus}{}_s)_{0\leq s\leq 1}$$
 a.s.



- ♦ Our algorithm on noncrossing partitions is the transcription of Marchal's algorithm, so that the convergence of the rescaled encoding Dyck path holds a.s. for this choice of sequence (*P_n*)_n.
- ♦ Same thing for the algorithm on noncrossing pair partitions.

Recursive construction

Encoding by a Dyck path

Convergence in distribution

Almost sure convergence

