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Noncrossing partition: partition of the n-th roots of unity for some n ≥ 1,

such that the convex hulls of its blocks are pairwise disjoint
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Lamination: closed subset of the unit disk D consisting of a union of

chords whose intersections with the open unit disk are pairwise disjoint
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Hausdorff metric

The Hausdorff distance between

closed subsets A, B ⊆ D is

inf
{

ε > 0 : A ⊆ B(ε) and B ⊆ A(ε)
}

,

where X (ε) :=
{

z ∈ D : d(z,X ) ≤ ε
}
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d

Endowed with the Hausdorff metric, the set of all closed subsets of D is

a compact metric space.
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The Brownian triangulation B [Aldous]

6 Take a normalized Brownian excursion (et)0≤t≤1.

6 For s, t ∈ [0,1], declare s
e∼ t

when es = et = min
s∧t≤r≤s∨t

er .

6 The Brownian triangulation is

B :=
⋃

s
e

∼t

[
e2iπs,e2iπt

]
.
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s t0 1

A.s., B is a closed subset of D and a continuous triangulation of D, that

is, each connected component of D \ B is an open Euclidean triangle

whose vertices belong to the unit circle.
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[simulation by Igor Kortchemski]
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The theorems

Theorem (Curien–Kortchemski ’14, B. ’17)

Let Pn be a uniform noncrossing partition of size n, seen as a

lamination. Then Pn
(d)−−→ B, for the Hausdorff topology.

Theorem (Curien–Kortchemski ’14, B. ’17)

Let P̃n be a uniform noncrossing pair partition of size 2n, seen as a

lamination. Then P̃n
(d)−−→ B, for the Hausdorff topology.

Jérémie BETTINELLI Convergence of uniform noncrossing partitions toward the Brownian triangulation January 17, 2019



66666656

Introduction
666666

Recursive construction
66

Encoding by a Dyck path
6666

Convergence in distribution
66666

Almost sure convergence

The theorems

Theorem (Curien–Kortchemski ’14, B. ’17)

Let Pn be a uniform noncrossing partition of size n, seen as a

lamination. Then Pn
(d)−−→ B, for the Hausdorff topology.

Theorem (Curien–Kortchemski ’14, B. ’17)

Let P̃n be a uniform noncrossing pair partition of size 2n, seen as a

lamination. Then P̃n
(d)−−→ B, for the Hausdorff topology.

6 setting proposed for uniform triangulations [Aldous ’94]

6 uniform dissections, non-crossing trees [Curien–Kortchemski ’14]

6 “stable” analogs [Kortchemski ’12, Kortchemski–Marzouk ’16]

6 recursive triangulations [Curien–Le Gall ’11]

6 simply generated noncrossing part. [Kortchemski–Marzouk ’17]
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Uniformly sampled examples of size 100

noncrossing partition noncrossing pair partition

[simulations by Igor Kortchemski]

Jérémie BETTINELLI Convergence of uniform noncrossing partitions toward the Brownian triangulation January 17, 2019



66666666

Introduction
566666

Recursive construction
66

Encoding by a Dyck path
6666

Convergence in distribution
66666

Almost sure convergence

Kreweras complement

PSfrag replacements

0

1

23

4

5

6

7 8

9

Jérémie BETTINELLI Convergence of uniform noncrossing partitions toward the Brownian triangulation January 17, 2019



66666666

Introduction
566666

Recursive construction
66

Encoding by a Dyck path
6666

Convergence in distribution
66666

Almost sure convergence

Kreweras complement

PSfrag replacements

0

1

23

4

5

6

7 8

9

Jérémie BETTINELLI Convergence of uniform noncrossing partitions toward the Brownian triangulation January 17, 2019



66666666

Introduction
566666

Recursive construction
66

Encoding by a Dyck path
6666

Convergence in distribution
66666

Almost sure convergence

Kreweras complement

PSfrag replacements

0

1

23

4

5

6

7 8

9

Jérémie BETTINELLI Convergence of uniform noncrossing partitions toward the Brownian triangulation January 17, 2019



66666666

Introduction
656666

Recursive construction
66

Encoding by a Dyck path
6666

Convergence in distribution
66666

Almost sure convergence

Operation 1: inserting a vertex at position k

Data: a noncrossing partition of size n and an index k ∈ {0,1, . . . ,2n}
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Operation 2: slicing at position k

Data: a noncrossing partition of size n and an index k ∈ {0,1, . . . ,2n}
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Growing algorithm

Algorithm

1 Let P1 be the only partition of size 1.
2 Generate Pn+1 from Pn as follows:

1 choose an integer k uniformly at random in {0, 1, . . . , 2n};
2 with probabilities 1/2 - 1/2, set Pn+1 to be obtained from Pn

• either by inserting a vertex at position k,
• or by slicing at position k.
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Growing algorithm

Algorithm

1 Let P1 be the only partition of size 1.
2 Generate Pn+1 from Pn as follows:

1 choose an integer k uniformly at random in {0, 1, . . . , 2n};
2 with probabilities 1/2 - 1/2, set Pn+1 to be obtained from Pn

• either by inserting a vertex at position k,
• or by slicing at position k.

Proposition

Pn is a uniform noncrossing partition of size n. Moreover, seen as a

lamination, Pn almost surely converges toward the Brownian

triangulation B, for the Hausdorff topology.
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Inserting a chord in a noncrossing pair partition

Data: a noncrossing pair partition of size 2n and a k ∈ {0,1, . . . ,2n}
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k

inserting a short chord inserting a long chord
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Growing algorithm

Algorithm

1 Let P̃1 be the only pair partition of size 2.

2 Generate P̃n+1 from P̃n as follows:

1 choose an integer k uniformly at random in {0, 1, . . . , 2n};
2 with probabilities 1/2 - 1/2, set P̃n+1 to be obtained from P̃n by

inserting at position k
• either a short chord,
• or a long chord.
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1 Let P̃1 be the only pair partition of size 2.

2 Generate P̃n+1 from P̃n as follows:

1 choose an integer k uniformly at random in {0, 1, . . . , 2n};
2 with probabilities 1/2 - 1/2, set P̃n+1 to be obtained from P̃n by

inserting at position k
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• or a long chord.

Proposition

P̃n is a uniform noncrossing pair partition of size 2n. Moreover, seen as

a lamination, P̃n almost surely converges toward the Brownian

triangulation B, for the Hausdorff topology.
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Encoding a noncrossing partition by a Dyck path
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partition of size n.
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6 Take a noncrossing

partition of size n.

6 Consider its Kreweras

complement.

6 Assign label 0 to the

first block

6 Recursively assign

label ℓ+ 1 to each not

yet labeled neighbor

of a block labeled ℓ.

6 Assign to each 2n-th

root of unity the label

of its block.
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path.
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block when they share

a label that is smaller

than all the labels on

an arc inbetween.
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complement is

obtained by the same

method with “odd”

2n-th roots of unity.
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Uniform noncrossing partitions

follows the general strategy of [Curien–Kortchemski ’14]

6 Let Pn be a uniform noncrossing partition of size n.

6 Let Ln : [0,1] → R+ be the encoding Dyck path (Ln(k/2n): label of

the k-th 2n-th root of unity, and linear interpolation).

6 By Kaigh’s theorem (conditioned version of Donsker),
(

Ln(s)√
2n

)

0≤s≤1

(d)−−→ (es)0≤s≤1 .

6 We apply Skorokhod’s theorem and assume a.s. convergence.

6 By compactness, (Pn)n has accumulation points. Let P be one.

6 We conclude by showing that P = B.
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P = B

Reminder

s
e∼ t when es = et = min

s∧t≤r≤s∨t
er B :=

⋃

s
e

∼t

[
e2iπs,e2iπt

]

6 As the local minimums of e on (0,1) are distinct, if s
e∼ t with s < t ,

we can find even sn, tn ∈ {0,2,4, . . . ,2n} such that sn < tn,

sn

2n
→ s ,

tn

2n
→ t and Ln

( sn

2n

)

= Ln

( tn

2n

)

< min
[ sn+1

2n
,

tn−1
2n

]
Ln .

6 The chord
[
ωsn

2n, ω
tn
2n

]
⊆ Pn, so that [e2iπs,e2iπt ] ⊆ P. Thus B ⊆ P.

6 B is maximal for the inclusion relation, so that B = P.
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Uniform noncrossing pair partitions: first approach

simple bijection

noncrossing pair partitions of size 2n ↔ noncrossing partitions of size n
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The corresponding laminations are at Hausdorff distance ≤ π/n.
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Uniform noncrossing pair partitions: direct proof

PSfrag replacements

0

1

2

3

4

6 Take a noncrossing

partition of size 2n.
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partition of size 2n.

6 Rotate the picture by

an angle of −π/2n.
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6 Take a noncrossing

partition of size 2n.

6 Rotate the picture by

an angle of −π/2n.

6 Encode the Kreweras

complement by its

Dyck path.
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complement by its

Dyck path.

6 The partition is a pair

partition iff the Dyck

path has no peaks at

odd times; we may

remove odd values.
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Rémy’s bijection on binary trees

(2)
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Rémy’s algorithm on Dyck paths

Algorithm

1 Let D1 be the only 2-step Dyck path.
2 Generate Dn+1 from Dn as follows:

1 choose a time k uniformly at random in {0, 1, . . . , 2n};
2 with probabilities 1/2 - 1/2, set the mark m to be a or b;
3 set Dn+1 as the image of (Dn, k ,m) by Marchal’s bijection.
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Theorem (Marchal ’03)

The path Dn is a uniform 2n-step Dyck path. Moreover, after linear

interpolation,

(
Dn(2n s)√

2n

)

0≤s≤1

→ (es)0≤s≤1 a.s.
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The algorithm on noncrossing partitions
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6 Our algorithm on noncrossing partitions is the transcription of

Marchal’s algorithm, so that the convergence of the rescaled

encoding Dyck path holds a.s. for this choice of sequence (Pn)n.

6 Same thing for the algorithm on noncrossing pair partitions.
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