Map encoding

Scaling limit

Brownian disks

Jérémie BETTINELLI

joint work with Grégory Miermont

Jan. 26, 2016

Brownian disks

Map encoding

Scaling limit

Plane maps

plane map: finite connected graph embedded in the sphere **faces:** connected components of the complement

Brownian disks

Map encoding

Scaling limit

Example of plane map

faces: countries and bodies of water

connected graph

no "enclaves"

Jérémie BETTINELLI

Brownian disks

Jan. 26, 2016

Brownian disks

Map encoding

Scaling limit

Rooted maps

rooted map: map with one distinguished corner

Brownian disks

Map encoding

Scaling limit

Edge deformation

Map encoding

Scaling limit

Map encoding

Scaling limit

Map encoding

Scaling limit

Map encoding

Scaling limit

Map encoding

Scaling limit

Map encoding

Scaling limit

Gromov-Hausdorff topology: formal definition

- ↔ [*X*, *d*]: isometry class of (*X*, *d*)
- $\Leftrightarrow \mathbb{M} := \{ [X, d], (X, d) \text{ compact metric space} \}$

$$\textit{d}_{\mathsf{GH}}\left([\textit{X},\textit{d}],[\textit{X}',\textit{d}']
ight) \coloneqq \inf \textit{d}_{\mathsf{Hausdorff}}ig(arphi(\textit{X}),arphi'(\textit{X}')ig)$$

where the infimum is taken over all metric spaces (Z, δ) and isometric embeddings $\varphi : (X, d) \to (Z, \delta)$ and $\varphi' : (X', d') \to (Z, \delta)$.

♦ $(\mathbb{M}, d_{\mathsf{GH}})$ is a Polish space.

Scaling limit: the Brownian map

* am: finite metric space obtained by endowing the vertex-set of m with a times the graph metric (each edge has length a).

Theorem (Le Gall '11, Miermont '11)

Let q_n be a uniform plane quadrangulation with n faces. The sequence $((8n/9)^{-1/4} q_n)_{n \ge 1}$ converges weakly in the sense of the Gromov–Hausdorff topology toward a random compact metric space called the Brownian map.

Scaling limit: the Brownian map

\$\[\$\$ a \mathbf{m}\$: finite metric space obtained by endowing the vertex-set of \mathbf{m}\$ with a times the graph metric (each edge has length a).

Theorem (Le Gall '11, Miermont '11)

Let q_n be a uniform plane quadrangulation with n faces. The sequence $((8n/9)^{-1/4} q_n)_{n \ge 1}$ converges weakly in the sense of the Gromov–Hausdorff topology toward a random compact metric space called the Brownian map.

Definition (Convergence for the Gromov–Hausdorff topology)

A sequence (\mathcal{X}_n) of compact metric spaces **converges in the sense of the Gromov–Hausdorff topology** toward a metric space \mathcal{X} if there exist isometric embeddings $\varphi_n : \mathcal{X}_n \to \mathcal{Z}$ and $\varphi : \mathcal{X} \to \mathcal{Z}$ into a common metric space \mathcal{Z} such that $\varphi_n(\mathcal{X}_n)$ converges toward $\varphi(\mathcal{X})$ in the sense of the Hausdorff topology.

Scaling limit: the Brownian map

* am: finite metric space obtained by endowing the vertex-set of m with a times the graph metric (each edge has length a).

Theorem (Le Gall '11, Miermont '11)

Let q_n be a uniform plane quadrangulation with n faces. The sequence $((8n/9)^{-1/4} q_n)_{n \ge 1}$ converges weakly in the sense of the Gromov–Hausdorff topology toward a random compact metric space called the Brownian map.

This theorem has been proven independently by two different approaches by Miermont and by Le Gall.

Map encoding

Scaling limit

Uniform plane quadrangulation with 50 000 faces

Scaling limit

Earlier results

- Chassaing–Schaeffer '04
 - the scaling factor is n^{1/4}
 - scaling limit of functionals of random uniform quadrangulations (radius, profile)
- Marckert–Mokkadem '06
 - introduction of the Brownian map
- ♦ Le Gall '07
 - the sequence of rescaled quadrangulations is relatively compact
 - any subsequential limit has the topology of the Brownian map
 - any subsequential limit has Hausdorff dimension 4
- Le Gall–Paulin '08 & Miermont '08
 - the topology of any subsequential limit is that of the two-sphere
- Bouttier–Guitter '08
 - · limiting joint distribution between three uniformly chosen vertices

Universality of the Brownian map

Many other natural models of plane maps converge to the Brownian map (up to a scale constant depending on the model): for well-chosen maps \mathfrak{m}_n ,

 $c n^{-1/4} \mathfrak{m}_n \xrightarrow[n \to \infty]{}$ Brownian map.

♦ Le Gall '11: uniform *p*-angulations for $p \in \{3, 4, 6, 8, 10, ...\}$ and Boltzmann bipartite maps with fixed number of vertices

Using Le Gall's method, many generalizations:

- ♦ Beltran and Le Gall '12: quadrangulations with no pendant edges
- Addario-Berry–Albenque '13: simple triangulations and simple quadrangulations
- B.–Jacob–Miermont '14: general maps with fixed number of edges
- Abraham '14: bipartite maps with fixed number of edges
- ♦ Albenque (in prep.): *p*-angulations for odd $p \ge 5$

plane quadrangulations with a boundary: plane map whose face have degree 4, except maybe the root face

the boundary is not in general a simple curve

Brownian disks

Scaling limit

Scaling limit: generic case

- q_n uniform among quadrangulations with a boundary having n internal faces and an external face of degree 2l_n
- ♦ $I_n/\sqrt{2n} \rightarrow L \in (0,\infty)$

Theorem (B.–Miermont '15)

The sequence $((8n/9)^{-1/4}q_n)_{n\geq 1}$ converges weakly in the sense of the Gromov–Hausdorff topology toward a random compact metric space BD_L called the Brownian disk of perimeter L.

Theorem (B. '11)

Let L > 0 be fixed. Almost surely, the space BD_L is homeomorphic to the closed unit disk of \mathbb{R}^2 . Moreover, almost surely, the Hausdorff dimension of BD_L is 4, while that of its boundary ∂BD_L is 2.

Map encoding

Scaling limit

40 000 faces and boundary length 1 000

Scaling limit: degenerate cases

- $\Rightarrow I_n/\sqrt{2n} \rightarrow 0$

Theorem (B. '11)

The sequence $((8n/9)^{-1/4} q_n)_{n \ge 1}$ converges weakly in the sense of the Gromov–Hausdorff topology toward the Brownian map.

Scaling limit: degenerate cases

- $\Rightarrow I_n/\sqrt{2n} \rightarrow 0$

Theorem (B. '11)

The sequence $((8n/9)^{-1/4} q_n)_{n \ge 1}$ converges weakly in the sense of the Gromov–Hausdorff topology toward the Brownian map.

$$I_n/\sqrt{2n} \rightarrow \infty$$

Theorem (B. '11)

The sequence $((2\sigma_n)^{-1/2}q_n)_{n\geq 1}$ converges weakly in the sense of the Gromov–Hausdorff topology toward the Brownian Continuum Random Tree (universal scaling limit of models of random trees).

Scaling limit

Scaling limit: degenerate cases

 $\Rightarrow I_n/\sqrt{2n} \rightarrow 0$

Theorem (B. '11)

The sequence $((8n/9)^{-1/4} q_n)_{n \ge 1}$ converges weakly in the sense of the Gromov–Hausdorff topology toward the Brownian map.

 $\Rightarrow I_n/\sqrt{2n} \rightarrow \infty$

Theorem (B. '11)

The sequence $((2\sigma_n)^{-1/2}q_n)_{n\geq 1}$ converges weakly in the sense of the Gromov–Hausdorff topology toward the Brownian Continuum Random Tree (universal scaling limit of models of random trees).

to be compared with Bouttier-Guitter '09

Jérémie BETTINELLI

Brownian disks

Map encoding

Scaling limit

10000 faces and boundary length 2000

Brownian disks

Map encoding

Scaling limit

Universality

Theorem (B.-Miermont '15)

Let $L \in (0,\infty)$ be fixed, $(I_n, n \ge 1)$ be a sequence of integers such that $I_n \sim L\sqrt{p(p-1)n}$ as $n \to \infty$, and \mathfrak{m}_n be uniformly distributed over the set of 2p-angulations with n internal faces and perimeter $2I_n$. Then $((4p(p-1)n/9)^{-1/4}\mathfrak{m}_n)_{n\ge 1}$ converges weakly in the sense of the Gromov–Hausdorff topology toward BD_L.

The Brownian map

Map encoding

Scaling limit

Universality

Theorem (B.-Miermont '15)

Let $L \in (0,\infty)$ be fixed, $(I_n, n \ge 1)$ be a sequence of integers such that $I_n \sim L\sqrt{p(p-1)n}$ as $n \to \infty$, and \mathfrak{m}_n be uniformly distributed over the set of 2p-angulations with n internal faces and perimeter $2I_n$. Then $((4p(p-1)n/9)^{-1/4}\mathfrak{m}_n)_{n\ge 1}$ converges weakly in the sense of the Gromov–Hausdorff topology toward BD_L.

Theorem (B.–Miermont '15)

Let \mathfrak{m}_n be a uniform random bipartite map with n edges and with perimeter $2I_n$, where $I_n \sim 3L\sqrt{n/2}$ for some L > 0. Then $((2n)^{-1/4} \mathfrak{m}_n)_{n \geq 1}$ converges weakly in the sense of the Gromov–Hausdorff topology toward BD_L .

Brownian disks

Map encoding

Scaling limit

Universality

Theorem (B.-Miermont '15)

Let $L \in (0,\infty)$ be fixed, $(I_n, n \ge 1)$ be a sequence of integers such that $I_n \sim L\sqrt{p(p-1)n}$ as $n \to \infty$, and \mathfrak{m}_n be uniformly distributed over the set of 2p-angulations with n internal faces and perimeter $2I_n$. Then $((4p(p-1)n/9)^{-1/4}\mathfrak{m}_n)_{n\ge 1}$ converges weakly in the sense of the Gromov–Hausdorff topology toward BD_L.

Theorem (B.–Miermont '15)

Let \mathfrak{m}_n be a uniform random bipartite map with n edges and with perimeter $2I_n$, where $I_n \sim 3L\sqrt{n/2}$ for some L > 0. Then $((2n)^{-1/4} \mathfrak{m}_n)_{n \geq 1}$ converges weakly in the sense of the Gromov–Hausdorff topology toward BD_L .

More universality results for bipartite Boltzmann maps conditionned on their number of vertices, faces or edges.

Jérémie BETTINELLI

Brownian disks

Brownian disks

Map encoding

Scaling limit

The encoding bijection

 Take a labeled forest.

Brownian disks

Map encoding

Scaling limit

- Take a labeled forest.
- Add a vertex v[•]
 inside the unique face.

Brownian disks

Map encoding

Scaling limit

- Take a labeled forest.
- Add a vertex v•
 inside the unique face.
- Link every corner to the first subsequent corner having a strictly smaller label.

Brownian disks

Map encoding

Scaling limit

- Take a labeled forest.
- Add a vertex v•
 inside the unique face.
- Link every corner to the first subsequent corner having a strictly smaller label.

Brownian disks

Map encoding

Scaling limit

- Take a labeled forest.
- Add a vertex v•
 inside the unique face.
- Link every corner to the first subsequent corner having a strictly smaller label.

Brownian disks

Map encoding

Scaling limit

- Take a labeled forest.
- Add a vertex v•
 inside the unique face.
- Link every corner to the first subsequent corner having a strictly smaller label.

Brownian disks

Map encoding

Scaling limit

- Take a labeled forest.
- Add a vertex v•
 inside the unique face.
- Link every corner to the first subsequent corner having a strictly smaller label.

Brownian disks

Map encoding

Scaling limit

- Take a labeled forest.
- Add a vertex v•
 inside the unique face.
- Link every corner to the first subsequent corner having a strictly smaller label.
Brownian disks

Map encoding

Scaling limit

- Take a labeled forest.
- Add a vertex v•
 inside the unique face.
- Link every corner to the first subsequent corner having a strictly smaller label.

Brownian disks

Map encoding

Scaling limit

- Take a labeled forest.
- Add a vertex v•
 inside the unique face.
- Link every corner to the first subsequent corner having a strictly smaller label.

Brownian disks

Map encoding

Scaling limit

- Take a labeled forest.
- Add a vertex v•
 inside the unique face.
- Link every corner to the first subsequent corner having a strictly smaller label.

Brownian disks

Map encoding

Scaling limit

- Take a labeled forest.
- Add a vertex v•
 inside the unique face.
- Link every corner to the first subsequent corner having a strictly smaller label.

Brownian disks

Map encoding

Scaling limit

- Take a labeled forest.
- Add a vertex v•
 inside the unique face.
- Link every corner to the first subsequent corner having a strictly smaller label.

Brownian disks

Map encoding

Scaling limit

- Take a labeled forest.
- Add a vertex v•
 inside the unique face.
- Link every corner to the first subsequent corner having a strictly smaller label.

Brownian disks

Map encoding

Scaling limit

- Take a labeled forest.
- Add a vertex v[•]
 inside the unique face.
- Link every corner to the first subsequent corner having a strictly smaller label.

Brownian disks

Map encoding

Scaling limit

- Take a labeled forest.
- Add a vertex v[•]
 inside the unique face.
- Link every corner to the first subsequent corner having a strictly smaller label.

Brownian disks

Map encoding

Scaling limit

- Take a labeled forest.
- Add a vertex v[•]
 inside the unique face.
- Link every corner to the first subsequent corner having a strictly smaller label.

Brownian disks

Map encoding

Scaling limit

- Take a labeled forest.
- Add a vertex v[•]
 inside the unique face.
- Link every corner to the first subsequent corner having a strictly smaller label.

Brownian disks

Map encoding

Scaling limit

- Take a labeled forest.
- Add a vertex v•
 inside the unique face.
- Link every corner to the first subsequent corner having a strictly smaller label.

Brownian disks

Map encoding

Scaling limit

- Take a labeled forest.
- Add a vertex v•
 inside the unique face.
- Link every corner to the first subsequent corner having a strictly smaller label.

Brownian disks

Map encoding

Scaling limit

- Take a labeled forest.
- Add a vertex v•
 inside the unique face.
- Link every corner to the first subsequent corner having a strictly smaller label.

Brownian disks

Map encoding

Scaling limit

- Take a labeled forest.
- Add a vertex v•
 inside the unique face.
- Link every corner to the first subsequent corner having a strictly smaller label.
- Remove the initial edges.

Map encoding

Scaling limit

Key facts

Theorem (Bouttier–Di Francesco–Guitter (generalization of Cori–Vauquelin–Schaeffer))

The previous construction yields a bijection between the following:

- Iabeled forests with n edges and I trees;
- pointed quadrangulations with a boundary having n internal faces and boundary length 2I such that the root vertex is farther away from the distinguished vertex than the previous vertex in clockwise order around the boundary.

Lemma

The labels of the forest become the distances in the map to the distinguished vertex v^{\bullet} .

Brownian disks

Map encoding

Scaling limit

Slices

 Proceed tree by tree.

Jérémie BETTINELLI

Brownian disks

Jan. 26, 2016

Brownian disks

Map encoding

- Proceed tree by tree.
- Add a chain of vertices linking the root to a vertex with label the minimum of the tree minus 1.

Brownian disks

Map encoding

- Proceed tree by tree.
- Add a chain of vertices linking the root to a vertex with label the minimum of the tree minus 1.

Proceed as before.

Brownian disks

Map encoding

- Proceed tree by tree.
- Add a chain of vertices linking the root to a vertex with label the minimum of the tree minus 1.

Proceed as before.

Brownian disks

Map encoding

- Proceed tree by tree.
- Add a chain of vertices linking the root to a vertex with label the minimum of the tree minus 1.

Proceed as before.

Brownian disks

Map encoding

Scaling limit

- Proceed tree by tree.
- Add a chain of vertices linking the root to a vertex with label the minimum of the tree minus 1.

Proceed as before.

Brownian disks

Map encoding

Scaling limit

- Proceed tree by tree.
- Add a chain of vertices linking the root to a vertex with label the minimum of the tree minus 1.

Proceed as before.

Brownian disks

Map encoding

Scaling limit

- Proceed tree by tree.
- Add a chain of vertices linking the root to a vertex with label the minimum of the tree minus 1.

Proceed as before.

Brownian disks

Map encoding

Scaling limit

- Proceed tree by tree.
- Add a chain of vertices linking the root to a vertex with label the minimum of the tree minus 1.

Proceed as before.

Brownian disks

Map encoding

Scaling limit

- Proceed tree by tree.
- Add a chain of vertices linking the root to a vertex with label the minimum of the tree minus 1.

Proceed as before.

Brownian disks

Map encoding

Scaling limit

- Proceed tree by tree.
- Add a chain of vertices linking the root to a vertex with label the minimum of the tree minus 1.

Proceed as before.

Brownian disks

Map encoding

Scaling limit

- Proceed tree by tree.
- Add a chain of vertices linking the root to a vertex with label the minimum of the tree minus 1.

Proceed as before.

Brownian disks

Map encoding

- Proceed tree by tree.
- Add a chain of vertices linking the root to a vertex with label the minimum of the tree minus 1.

Proceed as before.

Brownian disks

Map encoding

- Proceed tree by tree.
- Add a chain of vertices linking the root to a vertex with label the minimum of the tree minus 1.

Proceed as before.

Brownian disks

Map encoding

Scaling limit

- Proceed tree by tree.
- Add a chain of vertices linking the root to a vertex with label the minimum of the tree minus 1.
- Proceed as before.

Brownian disks

Map encoding

Scaling limit

- Proceed tree by tree.
- Add a chain of vertices linking the root to a vertex with label the minimum of the tree minus 1.

Proceed as before.

Brownian disks

Map encoding

Scaling limit

Slices of the previous computer simulation

Map encoding

Case of the Brownian map (I = 1)

- Distinguishing a uniformly chosen vertex in a uniform quadrangulation gives a uniform pointed quadrangulation.
- A uniform pointed quadrangulation corresponds via the previous bijection to a uniform labeled tree.
- Relax the positivity constraints on the label by shifting them in such a way that the root vertex gets label 0.

Map encoding

Scaling limit

Case of the Brownian map (I = 1)

- Distinguishing a uniformly chosen vertex in a uniform quadrangulation gives a uniform pointed quadrangulation.
- A uniform pointed quadrangulation corresponds via the previous bijection to a uniform labeled tree.
- Relax the positivity constraints on the label by shifting them in such a way that the root vertex gets label 0.
- ♦ After proper rescaling (\sqrt{n} for tree length and $n^{1/4}$ for labels), the resulting labeled tree converges in a natural sense (encoding by contour and label functions) to (\mathcal{T}_e , Z), where
 - T_e is Aldous's Brownian Continuum Random Tree (universal scaling limit of random tree models);
 - Z is a Brownian motion indexed by \mathcal{T} .

Scaling limit

Construction of the Brownian map

Consider the CRT T_e, that is, the random real tree encoded by the normalized Brownian excursion.

Construction of the Brownian map

♦ Consider the CRT T_e, that is, the random real tree encoded by the normalized Brownian excursion.

♦ Put Brownian labels Z on T_e .
Scaling limit

Construction of the Brownian map

♦ Consider the CRT T_e, that is, the random real tree encoded by the normalized Brownian excursion.

- ♦ Put Brownian labels Z on T_e .
- ♦ Identify the points *a* and *b* whenever Z_a = Z_b = min_[a,b] Z or Z_a = Z_b = min_[b,a] Z.

Construction of the Brownian map

♦ Consider the CRT T_e, that is, the random real tree encoded by the normalized Brownian excursion.

- ♦ Put Brownian labels Z on T_e .
- ♦ Identify the points *a* and *b* whenever Z_a = Z_b = min_[a,b] Z or Z_a = Z_b = min_[b,a] Z.

Map encoding

Scaling limit

Construction of the Brownian map

♦ Consider the CRT T_e, that is, the random real tree encoded by the normalized Brownian excursion.

- ♦ Put Brownian labels Z on T_e .
- ♦ Identify the points *a* and *b* whenever Z_a = Z_b = min_[a,b] Z or Z_a = Z_b = min_[b,a] Z.

Brownian disks

Map encoding

Scaling limit

Scaling limit of a uniform slice

 Same construction as before but only identify points a and b if

$$Z_a = Z_b = \min_{\mathcal{I}} Z$$

where \mathcal{I} is the "interval" among $\{[a, b], [b, a]\}$ that do not contain the root of the tree (equivalence class of 0).

Brownian disks

Map encoding

Scaling limit

Scaling limit of a uniform slice

 Alternatively, consider the Brownian map.

rownian disks

Map encoding

Scaling limit

Scaling limit of a uniform slice

- Alternatively, consider the Brownian map.
- Consider its root ρ (the image of the root of the CRT T_e) and the image of the (a.s. unique) point with minimum label
 x[•] := argmin Z.

rownian disks

Map encoding

Scaling limit

Scaling limit of a uniform slice

- Alternatively, consider the Brownian map.
- Consider its root ρ (the image of the root of the CRT T_e) and the image of the (a.s. unique) point with minimum label
 x[•] := argmin Z.
- Consider the (a.s. unique) geodesic linking them.

rownian disks

Map encoding

Scaling limit

Scaling limit of a uniform slice

- Alternatively, consider the Brownian map.
- Consider its root ρ (the image of the root of the CRT T_e) and the image of the (a.s. unique) point with minimum label
 x[•] := argmin Z.
- Consider the (a.s. unique) geodesic linking them.
- ♦ Cut it open.

Construction of Brownian disks

- A uniform quadrangulation with a boundary corresponds to a uniform labeled forest.
- The boundary of the quadrangulation corresponds to the floor of the forest (the set of tree roots).
- In the scaling limit,
 - the labels of this floor constitute a Brownian bridge;
 - the labeled trees converge to a Poisson point process of Brownian CRTs with Brownian labels.
- ♦ A Brownian disk is obtained by gluing the corresponding slices.

Caveat

There is an infinite number of slices... Fortunately, they accumulate near the boundary and we can show that a geodesic between two typical points stays away from the boundary, thus visits a finite number of slices.

Map encoding

Scaling limit

Construction of Brownian disks

Map encoding

Scaling limit

Construction of Brownian disks

Map encoding

Scaling limit

Construction of Brownian disks

Future work and open questions

- Orientable compact surfaces with a boundary
 - bijective encoding known (Chapuy–Marcus–Schaeffer '08 & Bouttier–Di Francesco–Guitter '04)
 - subsequential limits of rescaled quadrangulations exist (B. '14)
 - study of the geodesics toward the root (B. '14)
 - uniqueness of the limit (in progress with G. Miermont)
- Nonorientable compact surfaces
 - bijective encoding recently found (Chapuy–Dołęga '15 & B. '15)
 - subsequential limits of rescaled quadrangulations exist for surfaces without boundary (Chapuy–Dołęga '15)
 - uniqueness of the limit (project with G. Chapuy and M. Dołęga)
- Universality of the previous objects (different faces, simple boundary components, girth constraints...)
- Metric gluing of such objects (e.g. two disks along their boundary)
- $\diamond\,$ Infinite genus: let the number of faces and the genus tend to ∞ in the proper regime

Brownian disks

Map encoding

Scaling limit

Boltzmann random maps

♦ B: set of bipartite plane maps (maps with faces of even degrees)
 ♦ q = (q₁, q₂,...) ≠ (0,0,...): sequence of non-negative weights

The Boltzmann measure is defined on **B** by

$$W(\{\mathfrak{m}\}) = \prod_{f \text{ internal face}} q_{\deg(f)/2}.$$

Boltzmann random maps

◆ B: set of bipartite plane maps (maps with faces of even degrees)
 ◆ q = (q₁, q₂,...) ≠ (0,0,...): sequence of non-negative weights

The Boltzmann measure is defined on **B** by

$$W(\{\mathfrak{m}\}) = \prod_{f \text{ internal face}} q_{\deg(f)/2}.$$

- B₁: set of bipartite plane maps with perimeter (root face degree) 21
- ♦ $\mathbf{B}_{l,n}^{\mathbf{V}}$: maps of \mathbf{B}_l with n + 1 vertices
- ♦ $\mathbf{B}_{l,n}^{\mathsf{E}}$: maps of \mathbf{B}_l with *n* edges
- \Rightarrow **B**^F_{*l*,*n*}: maps of **B**_{*l*} with *n* internal faces

Whenever $0 < W(\mathbf{B}_{l,n}^{\mathbf{S}}) < \infty$, we may define the probability distribution

$$\mathbb{W}_{l,n}^{\mathbf{S}}(\cdot) := W(\cdot \mid \mathbf{B}_{l,n}^{\mathbf{S}}) = rac{W(\cdot \cap \mathbf{B}_{l,n}^{\mathbf{S}})}{W(\mathbf{B}_{l,n}^{\mathbf{S}})}.$$

Admissible, regular critical weight sequences

$$f_q(\mathbf{x}) := \sum_{k\geq 0} \mathbf{x}^k \binom{2k+1}{k} q_{k+1}, \qquad \mathbf{x}\geq 0.$$

- ♦ *q* is admissible if $f_q(z) = 1 \frac{1}{z}$ admits a solution z > 1.
- *q* is regular critical if moreover the solution *z* to the above equation satisfies *z*² *f*'_q(*z*) = 1 and if there exists *ε* > 0 such that *f*_q(*z* + *ε*) < ∞.

Convergence of Boltzmann maps

Let *q* be a regular critical weight sequence and **S** denote one of the symbols **V**, **E**, **F**. We define an explicit quantity $\sigma_{\mathbf{S}}$ whose precise expression will not be needed here.

Let L > 0 and $(I_k, n_k)_{k \ge 0}$ be a sequence such that $W(\mathbf{B}_{I_k, n_k}^{\mathbf{S}}) > 0$ and I_k , $n_k \to \infty$ with $I_k \sim L\sigma_{\mathbf{S}}\sqrt{n_k}$ as $k \to \infty$. Then $W(\mathbf{B}_{I_k, n_k}^{\mathbf{S}}) < \infty$.

Theorem (B.-Miermont '15)

For $k \geq 0$, denote by \mathfrak{m}_k a random map with distribution $\mathbb{W}_{l_k,n_k}^{\mathbf{S}}$. Then

$$\left(\frac{4\sigma_{\mathbf{S}}^2}{9} n_k\right)^{-1/4} \mathfrak{m}_k \xrightarrow[k \to \infty]{(d)} \mathsf{BD}_L$$

in distribution for the Gromov-Hausdorff topology.

Scaling limit

Application 1: uniform 2*p*-angulations

Let $p \ge 2$. The weight sequence

$$q := \frac{(p-1)^{p-1}}{p^p \binom{2p-1}{p}} \delta_p$$

is regular critical and $\mathbb{W}_{l,n}^{\mathsf{F}}$ is the uniform distribution on the set of 2p-angulations with *n* faces and perimeter 2*l*.

Corollary

Let $L \in (0, \infty)$ be fixed, $(I_n, n \ge 1)$ be a sequence of integers such that $I_n \sim L\sqrt{p(p-1)n}$ as $n \to \infty$, and \mathfrak{m}_n be uniformly distributed over the set of 2*p*-angulations with *n* internal faces and perimeter 2*I*_n. Then

$$\left(\frac{9}{4\rho(p-1)\,n}\right)^{1/4}\mathfrak{m}_n\xrightarrow[n\to\infty]{(d)}\mathsf{BD}_L$$

in distribution for the Gromov-Hausdorff topology.

Application 2: uniform bipartite maps

Let $q_k = 8^k$, $k \ge 1$. The weight sequence q is regular critical and $\mathbb{W}_{l,n}^{\mathsf{E}}$ is the uniform distribution over bipartite maps with n edges and perimeter 2*l*. (Recall that $\sum_{f \text{ face}} \deg(f)/2 = \text{number of edges.}$)

Corollary

Let \mathfrak{m}_n be a uniform random bipartite map with n edges and with perimeter $2I_n$, where $I_n \sim 3L\sqrt{n/2}$ for some L > 0. Then

$$(2n)^{-1/4}\mathfrak{m}_n \xrightarrow[n \to \infty]{} \mathsf{BD}_L$$

in distribution for the Gromov-Hausdorff topology.

Map encoding

Scaling limit

Free Brownian disk

- ♦ B₁: set of bipartite plane maps with perimeter 21
- ♦ q: regular critical weight sequence (imply that $W(\mathbf{B}_l) < \infty$)

Theorem (B.-Miermont '15)

For $l \in \mathbb{N}$, let \mathfrak{m}_l be distributed according to $W(\cdot | \mathbf{B}_l)$. The sequence $((2l/3)^{-1/2} \mathfrak{m}_l)_{l \geq 1}$ converges weakly in the sense of the Gromov–Hausdorff topology toward a random compact metric space called the free Brownian disk.

Map encoding

Scaling limit

Free Brownian disk

- ♦ B₁: set of bipartite plane maps with perimeter 21
- ♦ q: regular critical weight sequence (imply that $W(\mathbf{B}_l) < \infty$)

Theorem (B.-Miermont '15)

For $l \in \mathbb{N}$, let \mathfrak{m}_l be distributed according to $W(\cdot | \mathbf{B}_l)$. The sequence $((2l/3)^{-1/2} \mathfrak{m}_l)_{l \geq 1}$ converges weakly in the sense of the Gromov–Hausdorff topology toward a random compact metric space called the free Brownian disk.

♦ The free Brownian disk is distributed as $\mathcal{A}^{1/4}$ BD_{$\mathcal{A}^{-1/2}$} where \mathcal{A} has distribution given by

$$\frac{1}{\sqrt{2\pi A^5}}\exp\left(-\frac{1}{2A}\right) dA \mathbf{1}_{\{A>0\}}.$$

Map encoding

Scaling limit

Free Brownian disk

- ♦ B₁: set of bipartite plane maps with perimeter 21
- ♦ q: regular critical weight sequence (imply that $W(\mathbf{B}_l) < \infty$)

Theorem (B.-Miermont '15)

For $l \in \mathbb{N}$, let \mathfrak{m}_l be distributed according to $W(\cdot | \mathbf{B}_l)$. The sequence $((2l/3)^{-1/2} \mathfrak{m}_l)_{l \geq 1}$ converges weakly in the sense of the Gromov–Hausdorff topology toward a random compact metric space called the free Brownian disk.

♦ The free Brownian disk is distributed as $\mathcal{A}^{1/4}$ BD_{$\mathcal{A}^{-1/2}$} where \mathcal{A} has distribution given by

$$\frac{1}{\sqrt{2\pi A^5}}\exp\left(-\frac{1}{2A}\right) dA \mathbf{1}_{\{A>0\}}.$$

The scaling is universal: it does not involve q whatsoever!