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Plane maps

plane map: finite connected graph embedded in the sphere
faces: connected components of the complement
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Example of plane map

faces:
countries and
bodies of water

connected graph
no “enclaves”
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Rooted maps

rooted map: map with one distinguished corner
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POSUPOPIVON

Gromov—Hausdorff topology: picture
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Gromov—Hausdorff topology: formal definition

< [X,d]: isometry class of (X,d)

$ M := {[X,d], (X,d) compact metric space}

dGH ([de]v [X/7 d/]) = indeausdorﬁ(SO(X)’ SDI(X/))
where the infimum is taken over all metric spaces (Z, ) and isometric
embeddings ¢ : (X,d) — (Z,6) and ¢’ : (X',d") = (Z,0).

4+ (M, dgn) is a Polish space.
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Scaling limit: the Brownian map
< am: finite metric space obtained by endowing the vertex-set of m
with a times the graph metric (each edge has length a).
Theorem (Le Gall '11, Miermont '11)

Let g, be a uniform plane quadrangulation with n faces. The sequence
((8n/9)**4gq), ., converges weakly in the sense of the

Gromov—Hausdorff topology toward a random compact metric space
called the Brownian map.
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Scaling limit: the Brownian map

< am: finite metric space obtained by endowing the vertex-set of m
with a times the graph metric (each edge has length a).

Theorem (Le Gall '11, Miermont '11)

Let g, be a uniform plane quadrangulation with n faces. The sequence
((8n/9)**4gq), ., converges weakly in the sense of the
Gromov—Hausdorff topology toward a random compact metric space
called the Brownian map.

Definition (Convergence for the Gromov—Hausdorff topology)

A sequence (A}) of compact metric spaces converges in the sense of
the Gromov—Hausdorff topology = toward a metric space X if there
exist isometric embeddings ¢n : X, — Z and ¢ : X — Z into a common
metric space Z such that ¢, (X)) converges toward ¢(X) in the sense
of the Hausdorff topology.

.
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Scaling limit: the Brownian map
< am: finite metric space obtained by endowing the vertex-set of m
with a times the graph metric (each edge has length a).
Theorem (Le Gall '11, Miermont '11)

Let g, be a uniform plane quadrangulation with n faces. The sequence
((8n/9)**4gq), ., converges weakly in the sense of the

Gromov—Hausdorff topology toward a random compact metric space
called the Brownian map.

< This theorem has been proven independently by two different
approaches by Miermont and by Le Gall.
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Uniform plane quadrangulation with 50 000 faces

ol
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Earlier results

< Chassaing—Schaeffer '04

« the scaling factor is n'/*
« scaling limit of functionals of random uniform quadrangulations
(radius, profile)

< Marckert—-Mokkadem '06
« introduction of the Brownian map

< Le Gall '07

+ the sequence of rescaled quadrangulations is relatively compact
+ any subsequential limit has the topology of the Brownian map
+ any subsequential limit has Hausdorff dimension 4

< Le Gall-Paulin '08 & Miermont '08
* the topology of any subsequential limit is that of the two-sphere

< Bouttier—Guitter '08
« limiting joint distribution between three uniformly chosen vertices
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Universality of the Brownian map
Many other natural models of plane maps converge to the Brownian
map (up to a scale constant depending on the model): for well-chosen

maps mp,

cn~Y*m, —— Brownian map.
n—oo

¢ Le Gall '11: uniform p-angulations for p € {3,4,6,8,10,...} and
Boltzmann bipartite maps with fixed number of vertices
Using Le Gall's method, many generalizations:
< Beltran and Le Gall '12: quadrangulations with ho pendant edges

< Addario-Berry—Albenque '13: simple triangulations and simple
gquadrangulations

< B.—Jacob—Miermont '14: general maps with fixed number of edges
< Abraham '14: bipartite maps with fixed number of edges
< Albenque (in prep.): p-angulations forodd p > 5
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Plane quadrangulations with a boundary

plane quadrangulations with a boundary: plane map whose face
have degree 4, except maybe the root face

the boundary is not in general a simple curve
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Scaling limit: generic case

A
'

gn uniform among quadrangulations with a boundary having n
internal faces and an external face of degree 2I,

ln/v2n — L € (0, o)

A
'

Theorem (B.—Miermont '15)

The sequence ((8n/9)_1/4 dn),>, converges weakly in the sense of the
Gromov-Hausdorff topology toward a random compact metric space
BD, called the Brownian disk of perimeter L.

Theorem (B. '11)

Let L > 0 be fixed. Almost surely, the space BD, is homeomaorphic to
the closed unit disk of R2. Moreover, almost surely, the Hausdorff
dimension of BD, is 4, while that of its boundary 9 BD, is 2.

o
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40000 faces and boundary length 1 000
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Scaling limit: degenerate cases

< gn uniform among quadrangulations with a boundary having n
internal faces and an external face of degree 2I,

4+ In/v2n =0
Theorem (B. '11)

The sequence ((8n/9)~ /4 )n>1 converges weakly in the sense of the
Gromov—Hausdorff topology toward the Brownian map.
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Scaling limit: degenerate cases

< gn uniform among quadrangulations with a boundary having n
internal faces and an external face of degree 2I,

$+ Ih/v2n =0
Theorem (B. '11)

The sequence ((8n/9)_1/4 qn)n>1 converges weakly in the sense of the
Gromov—-Hausdorff topology toward the Brownian map.

$+ In/vV2n — oo
Theorem (B. '11)

The sequence ((20,1)*1/2%)n>1 converges weakly in the sense of the
Gromov—-Hausdorff topology toward the Brownian Continuum Random
Tree (universal scaling limit of models of random trees).
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Scaling limit: degenerate cases
4+ Ih/v2n =0
Theorem (B. '11)

The sequence ((8n/9) qn)n>1 converges weakly in the sense of the
Gromov—Hausdorff topology toward the Brownian map.

~1/4

4 In/V2n — 00
Theorem (B. '11)

The sequence ((20,1)*1/20“])n>1 converges weakly in the sense of the
Gromov—Hausdorff topology toward the Brownian Continuum Random
Tree (universal scaling limit of models of random trees).

to be compared with Bouttier—Guitter ‘09

Jérémie BETTINELLI Brownian disks Jan. 26, 2016



The Brownian map Brownian disks Map encoding Scaling limit
oo+

10000 faces and boundary length 2000
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Universality
Theorem (B.—Miermont '15)

Let L € (0, 0) be fixed, (In,n > 1) be a sequence of integers such that
In ~Ly/p(p —1)n as n — oo, and m, be uniformly distributed over the
set of 2p-angulations with n internal faces and perimeter 2I,,. Then
((4p(p — 1)n/9)"*m,) ., converges weakly in the sense of the
Gromov—Hausdorff topology toward BD, .
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Universality
Theorem (B.—Miermont '15)

Let L € (0, 0) be fixed, (In,n > 1) be a sequence of integers such that
In ~ Ly/p(p — 1)n as n — oo, and my be uniformly distributed over the
set of 2p-angulations with n internal faces and perimeter 2I,,. Then
((4p(p — 1)n/9)"*m,) ., converges weakly in the sense of the
Gromov—Hausdorff topology toward BD, .

Theorem (B.—Miermont '15)

Let m,, be a uniform random bipartite map with n edges and with
perimeter 2l,, where I, ~ 3L,/n/2 for some L > 0. Then
((2n)™**my) ., converges weakly in the sense of the
Gromov—Hausdorff topology toward BD, .
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Universality
Theorem (B.—Miermont '15)

Let L € (0, 0) be fixed, (In,n > 1) be a sequence of integers such that
In ~ Ly/p(p — 1)n as n — oo, and my be uniformly distributed over the
set of 2p-angulations with n internal faces and perimeter 2I,,. Then
((4p(p — 1)n/9)"*m,) ., converges weakly in the sense of the
Gromov—Hausdorff topology toward BD, .

Theorem (B.—Miermont '15)

Let m,, be a uniform random bipartite map with n edges and with
perimeter 2l,, where I, ~ 3L,/n/2 for some L > 0. Then
((2n)™**my) ., converges weakly in the sense of the
Gromov—Hausdorff topology toward BD, .

<> More universality results for bipartite Boltzmann maps conditionned
on their number of vertices, faces or edges.
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The encoding bijection

< Take a labeled
forest.
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The encoding bijection

< Take a labeled
forest.

< Add a vertex v*®
inside the unique
face.
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The encoding bijection

Brownian disks

<>

<+

Scaling limit

Take a labeled
forest.

Add a vertex v*
inside the unique
face.

Link every corner
to the first
subsequent
corner having a
strictly smaller
label.
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The encoding bijection

< Take a labeled
forest.

< Add a vertex v*®
inside the unique
face.

< Link every corner
to the first
subsequent
corner having a
strictly smaller
label.

Jérémie BETTINELLI Brownian disks Jan. 26, 2016



The Brownian map Brownian disks Map encoding Scaling limit
464

The encoding bijection

< Take a labeled
forest.

< Add a vertex v*®
inside the unique
face.

< Link every corner
to the first
subsequent
corner having a
strictly smaller
label.

Jérémie BETTINELLI Brownian disks Jan. 26, 2016



The Brownian map Brownian disks Map encoding Scaling limit
POVON

The encoding bijection

< Take a labeled
forest.

< Add a vertex v*®
inside the unique
face.

< Link every corner
to the first
subsequent
corner having a
strictly smaller
label.
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The encoding bijection

< Take a labeled
forest.

< Add a vertex v*
inside the unique
face.

< Link every corner
to the first
subsequent
corner having a
strictly smaller
label.
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The encoding bijection

< Take a labeled
forest.

< Add a vertex v*
inside the unique
face.

< Link every corner
to the first
subsequent
corner having a
strictly smaller
label.

< Remove the initial
edges.
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Key facts

Theorem (Bouttier—Di Francesco—Guitter (generalization of
Cori—Vauquelin—Schaeffer))
The previous construction yields a bijection between the following:
< labeled forests with n edges and | trees;
< pointed quadrangulations with a boundary having n internal faces
and boundary length 2| such that the root vertex is farther away

from the distinguished vertex than the previous vertex in clockwise
order around the boundary.

Lemma

The labels of the forest become the distances in the map to the
distinguished vertex v°.
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Slices

< Proceed tree by
tree.
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Slices

< Proceed tree by
tree.

< Add a chain of
vertices linking
the root to a
vertex with label
the minimum of
the tree minus 1.
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Jérémie BETTINELLI Brownian disks

Map encoding

Scaling limit

Proceed tree by
tree.

Add a chain of
vertices linking
the root to a
vertex with label
the minimum of
the tree minus 1.

Proceed as
before.
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Scaling limit
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Slices

< Proceed tree by
tree.

< Add a chain of
vertices linking
the root to a
vertex with label
the minimum of
the tree minus 1.

<>

Proceed as
before.
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Slices

<>

Proceed tree by
tree.

Add a chain of
vertices linking
the root to a
vertex with label
the minimum of
the tree minus 1.

<>

< Proceed as
before.
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Slices of the previous computer simulation
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Case of the Brownian map (I = 1)

< Distinguishing a uniformly chosen vertex in a uniform
guadrangulation gives a uniform pointed quadrangulation.

< A uniform pointed quadrangulation corresponds via the previous
bijection to a uniform labeled tree.

< Relax the positivity constraints on the label by shifting them in such
a way that the root vertex gets label O.
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Scaling limit
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Case of the Brownian map (I = 1)

< Distinguishing a uniformly chosen vertex in a uniform
guadrangulation gives a uniform pointed quadrangulation.

< A uniform pointed quadrangulation corresponds via the previous
bijection to a uniform labeled tree.

< Relax the positivity constraints on the label by shifting them in such
a way that the root vertex gets label O.

< After proper rescaling (y/n for tree length and nl/# for labels), the
resulting labeled tree converges in a natural sense (encoding by
contour and label functions) to (7e,Z), where

* Te is Aldous’s Brownian Continuum Random Tree (universal scaling
limit of random tree models);

+ Z is a Brownian motion indexed by T.
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Construction of the Brownian map

< Consider the CRT 7g, that is, the
random real tree encoded by the
normalized Brownian excursion.

0 1
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Construction of the Brownian map

<~ Consider the CRT 7g, that is, the
random real tree encoded by the
normalized Brownian excursion.

M
0 1

<> Put Brownian labels Z on 7e.
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The Brownian map Brownian disks Map encoding Scaling limit
YOOV

Construction of the Brownian map

<~ Consider the CRT 7g, that is, the
random real tree encoded by the
a normalized Brownian excursion.

M
b 0 l‘
<> Put Brownian labels Z on 7e.
< ldentify the points a and b

whenever Z, = Z,, = minpy ) Z
OrZa =Zp =mMiNp g Z.
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Construction of the Brownian map

<~ Consider the CRT 7g, that is, the
random real tree encoded by the
normalized Brownian excursion.

<> Put Brownian labels Z on 7e.

< ldentify the points a and b
whenever Z, = Z,, = minp, ) Z
OrZa =Zp =mMiNp g Z.
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The Brownian map Brownian disks Map encoding Scaling limit
YOOV

Construction of the Brownian map

<~ Consider the CRT 7g, that is, the
random real tree encoded by the
normalized Brownian excursion.

<> Put Brownian labels Z on 7e.

< ldentify the points a and b
whenever Z, = Z,, = minpy ) Z
OrZa =Zp =Minp g Z.
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Scaling limit of a uniform slice

< Same construction as before but
only identify points a and b if

Za=7Z,=minZ
a b 7

where 7 is the “interval” among
{[a,b], [b,a]} that do not contain
the root of the tree (equivalence
class of 0).
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Scaling limit
44444

Scaling limit of a uniform slice

< Alternatively, consider the
Brownian map.
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Scaling limit
44444

Scaling limit of a uniform slice

< Alternatively, consider the
Brownian map.

< Consider its root p (the
image of the root of the
CRT 7¢) and the image of
the (a.s. unique) point
with minimum label
X® :=argminZ.
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Scaling limit
44444

Scaling limit of a uniform slice

< Alternatively, consider the
Brownian map.

< Consider its root p (the
image of the root of the
CRT 7¢) and the image of
the (a.s. unique) point
with minimum label
X® :=argminZ.

< Consider the (a.s. unique)
geodesic linking them.
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Scaling limit
44444

Scaling limit of a uniform slice

< Alternatively, consider the
Brownian map.

< Consider its root p (the
image of the root of the
CRT 7¢) and the image of
the (a.s. unique) point
with minimum label
X® :=argminZ.

< Consider the (a.s. unique)
geodesic linking them.

< Cut it open.

Jérémie BETTINELLI Brownian disks Jan. 26, 2016



Scaling limit
AR

Construction of Brownian disks

< A uniform quadrangulation with a boundary corresponds to a
uniform labeled forest.

A
'

The boundary of the quadrangulation corresponds to the floor of
the forest (the set of tree roots).
In the scaling limit,

« the labels of this floor constitute a Brownian bridge;

« the labeled trees converge to a Poisson point process of Brownian
CRTs with Brownian labels.

A
'

A

> A Brownian disk is obtained by gluing the corresponding slices.

Caveat

There is an infinite number of slices... Fortunately, they accumulate
near the boundary and we can show that a geodesic between two
typical points stays away from the boundary, thus visits a finite number
of slices.
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Scaling limit
SRS addd

Construction of Brownian disks
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The Brownian map Brownian disks Map encoding Scaling limit
S60004

Construction of Brownian disks
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The Brownian map Brownian disks Map encoding Scaling limit
S60004

Construction of Brownian disks
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Future work and open questions

< Orientable compact surfaces with a boundary
* bijective encoding known (Chapuy—Marcus—Schaeffer '08 &
Bouttier—Di Francesco—Guitter '04)
 subsequential limits of rescaled quadrangulations exist (B. '14)
« study of the geodesics toward the root (B. '14)
* unigueness of the limit (in progress with G. Miermont)
< Nonorientable compact surfaces
* bijective encoding recently found (Chapuy—Dotega '15 & B. '15)
 subsequential limits of rescaled quadrangulations exist for surfaces
without boundary (Chapuy—-Dotega '15)
 uniqueness of the limit (project with G. Chapuy and M. Dolega)
< Universality of the previous objects (different faces, simple
boundary components, girth constraints...)
< Metric gluing of such objects (e.g. two disks along their boundary)

< Infinite genus: let the number of faces and the genus tend to oo in
the proper regime
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The Brownian map Brownian disks Map encoding Scaling limit
SELLLLoeS SHELed A aad S oed
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Boltzmann random maps

< B: set of bipartite plane maps (maps with faces of even degrees)
<+ q=1(91,92,...) # (0,0,...): sequence of non-negative weights

The Boltzmann measure is defined on B by

W({m}) = H Odeg(f)/2 -

f internal face
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Boltzmann random maps
< B: set of bipartite plane maps (maps with faces of even degrees)
> g =(d1,02,.-.) # (0,0,...): sequence of non-negative weights
The Boltzmann measure is defined on B by

W{mp) = J[ deesry2-

f internal face

< By: set of bipartite plane maps with perimeter (root face degree) 2I
> By',: maps of B with n + 1 vertices

< B[,: maps of B with n edges

> Bf,: maps of B with n internal faces

Whenever 0 < W (BP,) < oo, we may define the probability distribution
W(-NB3)
WE(-) == W(|BS,) = ——

I,n() ( | I,n) W(Bﬁn)
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The Brownian map Brownian disks Map encoding Scaling limit

Admissible, regular critical weight sequences

2k +1
fq (X) ::Zxk< ‘ >qk+1, x>0.

k>0

. T 1 : :
< g is admissible if fq(z) =1 — - admits a solution z > 1.

< q is regular critical if moreover the solution z to the above equation
satisfies zzfé(z) = 1 and if there exists € > 0 such that
fq(z +¢) < o0.
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Convergence of Boltzmann maps

Let g be a regular critical weight sequence and S denote one of the
symbols V, E, F. We define an explicit quantity o5 whose precise
expression will not be needed here.

LetL > 0 and (Ix, nk)x>o be a sequence such that W (BE nk) > 0 and I,
Nk — oo with Iy ~ Log/Ng as k — oo. Then W(Bﬁ,nk) < 0.

Theorem (B.—Miermont ’'15)
For k > 0, denote by my a random map with distribution Wﬁ N Then

4 2 -1/4
< i nk> mg ﬂ) BD,
9 k—o00

in distribution for the Gromov—Hausdorff topology.
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Application 1: uniform 2p-angulations

Let p > 2. The weight sequence

(p— 1P

q:i=-—>5"7""0p
pp(pr 1)

is regular critical and W[ is the uniform distribution on the set of
2p-angulations with n faces and perimeter 2I.

Corollary

Let L € (0,00) be fixed, (I,,n > 1) be a sequence of integers such that
In ~Ly/p(p — 1)n as n — oo, and m, be uniformly distributed over the
set of 2p-angulations with n internal faces and perimeter 2l,. Then

(4p(p9_ 1)n)1/4m o

in distribution for the Gromov—Hausdorff topology.

.
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Application 2: uniform bipartite maps

Let g« = 8, k > 1. The weight sequence q is regular critical and Wﬁn is
the uniform distribution over bipartite maps with n edges and
perimeter 2I. (Recall that > ; ;... deg(f)/2 = number of edges.)

Corollary

Let m, be a uniform random bipartite map with n edges and with
perimeter 2, where I, ~ 3Ly/n/2 for some L > 0. Then

(2n)Y4m, —— BD,
n—oo

in distribution for the Gromov—Hausdorff topology.
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Free Brownian disk

< By: set of bipartite plane maps with perimeter 2|
> q: regular critical weight sequence (imply that W (B)) < c0)

Theorem (B.—Miermont '15)

For | € N, let m; be distributed according to W (- | B|). The sequence
((21/3)7*2my),., converges weakly in the sense of the

Gromov-Hausdorff topology toward a random compact metric space
called the free Brownian disk.
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Free Brownian disk

< By: set of bipartite plane maps with perimeter 2|
> q: regular critical weight sequence (imply that W (B)) < c0)

Theorem (B.—Miermont '15)

For | € N, let m; be distributed according to W (- | B|). The sequence
((21/3)7*2my),., converges weakly in the sense of the

Gromov-Hausdorff topology toward a random compact metric space
called the free Brownian disk.

< The free Brownian disk is distributed as .A'/4 BD 41/> where A has
distribution given by

1 1
2% (an) Al
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Free Brownian disk

< By: set of bipartite plane maps with perimeter 2|
> q: regular critical weight sequence (imply that W (B)) < c0)

Theorem (B.—Miermont '15)

For | € N, let m; be distributed according to W (- | B|). The sequence
((21/3)7*2my),., converges weakly in the sense of the

Gromov-Hausdorff topology toward a random compact metric space
called the free Brownian disk.

< The free Brownian disk is distributed as .AY/* BD ,_1,» where A has
distribution given by

1 1
2% (an) Al

4 The scaling is universal: it does not involve q whatsoever!
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