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1 Definition of maps

1.1 Maps

The precise definition of maps is a bit tedious but the objects are really rather intuitive. In order to
easily grasp the concept, one might think of geographic maps, which give a slicing of some surface
into geographical areas. For its part, the terminology rather comes from the world of polyhedra,
with the notions of vertices, edges and faces. For the time being, we consider one of the following
surfaces: the sphere, the torus, the double torus, the triple torus, etc. Recall that the genus of such
a surface is its number of handles (see Figure 1).

Figure 1: The sphere (genre 0), the torus (genus 1) and the double torus (genus 2).

We furthermore consider a finite graph1, that is, a pair consisting in a finite set V of vertices
and a finite multiset2 E ⊆ {{u, v} : u, v ∈ V } of edges. The extremities of the edge {u, v} are the
vertices u and v. Note that we do not exclude that several edges have the same extremities (we
talk of multiple edges), neither that both extremities of some edges are equal (we say that such an

1As multiple edges and loops are allowed, the graphs we consider in these notes are sometimes refered to as multiraph,
especially in the combonatorics community.

2A multiset is a set with repetitions allowed.
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edge is a loop). An embedding of a graph (V,E) into a surface S is an injective function fV : V → S
and a collection of continuous functions fe : [0, 1] → S, e ∈ E such that

⋄ for each edge {u, v}, {f{u,v}(0), f{u,v}(1)} = {fV (u), fV (v)} ;

⋄ for all (s, e) 6= (s′, e′) ∈ (0, 1)× E, we have fe(s) 6= fe′(s
′).

In other words, it is an embedding of the vertices into the surface and the edges correspond
to continuous curves linking the points of the surface that correpond to their extremities. Fur-
thermore, the curves can only intersect at vertices. Next, we say that two embedings (fV , (fe))
and (gV , (ge)) of the same graph are equivalent if their exists an orientation-preserving homeomor-
phism ϕ of the underlying surface such that gV = ϕ ◦ fV and, for each e ∈ E, ge = ϕ ◦ fe.

An embedding (fV , (fe)) of is called cellular if the connected components of S \⋃e∈E fe([0, 1])
are open 2-cells, that is, homeomorphic to 2-dimensional open disks. We may finally give the
proper definition of a map.

Definition 1. A map is an equivalence class of cellular embeddings of a graph.

The previous connected components are called the faces of the map. An edge given with an
orientation is called a half-edge. We say that a face f is incident to a half-edge e (or that e is incident
to f ) if e is included in the boundary of f and is oriented in such a way that f lies to its left.
The number of half-edges incident to a face is called its degree. The genus of a map is defined
as the genus of the underlying surface. A map of genus 0 is called plane3 or spherical; a map of
genus 1 is called toroidal. Finally, all the maps we will consider will be rooted, that is, given with a
distinguished half-edge, called the root of the map. See Figure 2 for an example.

f

Figure 2: Genus 1 map with 6 vertices, 9 edges and 3 faces. The highlighted face f has degree 3. The root is represented
with a half arrowhead.

We end this section with some basic notation, which will be used in these notes. For a map m,
we let V (m) denote its set of vertices, E(m) its set of edges, ~E(m) its set of half-edges, and F (m)
its set of faces. For any half-edge e, we denote by ē its reverse, as well as e− and e+ its origin and
end. A path from v ∈ V (m) to v′ ∈ V (m) is a finite sequence (e1, e2, . . . , ek) of edges such that
e+i = e−i+1 for all 0 ≤ i ≤ k − 1. We denote by dm the graph metric on m defined as follows: for any
v, v′ ∈ V (m), the distance dm(v, v′) is the number of edges of any shortest path linking v to v′.

Finally, let us give the fundamental relation linking the number of vertices, edges and faces of
a map.

Proposition 1 (Euler’s characteristic formula). For any genus g-map m, one has the following identity:

|V (m)| − |E(m)|+ |F (m)| = 2− 2g .

3Technically, planar means “that can be embedded in the plane” whereas plane means “that is embedded in the plane.”
As a map is by definition embedded into a surface, it seems more logical to talk of plane maps rather than planar maps,
although the latter term is widespread in the literature. Furthermore, we often consider a map embedded in the sphere
or in the plane as being equivalent but, technically, this identification consists in distinguishing a face of the map as being
the infinite part of the plane. As a result, in some references, plane maps are defined as maps with a distinguished face.
In these notes, we only consider rooted maps, which come with a naturally distinguished face (the root face), so that the
identification is licit.
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1.2 Surfaces with a boundary

A surface with a boundary is a non empty Hausdorff topological space in which every point has
an open neighborhood homeomorphic to some open subset of R × R+. Its boundary is the 1-
dimensional manifold consisting of the points having a neighborhood homeomorphic to a neigh-
borhood of (0, 0) in R × R+. Note that, in particular, a surface without boundary is a surface
with a boundary whose boundary is empty. In these notes, we will only consider compact con-
nected orientable surfaces with a boundary. By the classification theorem, they are characterized
up to homeomorphisms by two nonnegative integers, the genus g and the number p of connected
components of the boundary. We denote by Σ

∂
g,p the unique (up to homeomorphism) compact

orientable surface of genus g with p boundary components; it can be obtained from the compact
orientable surface of genus g by removing p disjoint open disks whose boundaries are pairwise
disjoint circles. See Figure 3.

Figure 3: The surface with a boundary Σ
∂
1,3.

1.3 Quadrangulations with a boundary

For combinatorial reasons, we will restrict ourselves to bipartite maps: a map is called bipartite
if its vertex set can be partitioned into two subsets such that no edge links two vertices of the
same subset. For p ≥ 0, a quadrangulation with p boundary components is a bipartite map having p
distinguished faces h1, . . . , hp and whose other faces are all of degree 4. The distinguished faces
will be called external faces or holes. The other faces will be called internal faces. For n ∈ Z+ and
σ = (σ1, . . . , σp) ∈ N

p (with the convention that N0 := {∅}), we define the set Qn,σ of all genus g
quadrangulations with p boundary components having n internal faces and such that hi is of
degree 2σi, for 1 ≤ i ≤ p. See Figure 4 for an example.

h1

h2

h3

Figure 4: A quadrangulation from Q19,(4,1,2) in genus 1. The half arrowhead symbolizes the root.

Beware that quadrangulations with a boundary are defined as embedded into a surface with-
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out boundary. Removing from the surface all the external faces of the map does not in general
yield a surface with a boundary as the external faces may share vertices or edges or have a bound-
ary that is not a simple curve (as h1 on Figure 4 for instance). However, removing from every
external face an open disk whose boundary is a circle yields a surface with a boundary.

2 Scaling limits of maps

2.1 The general concept of scaling limits

The notion of scaling limit is well known in probability theory. The general principle is as follows.
We start with some class of combinatorial objects for which a notion of volume and a notion of
size is given. As the volume tends to infinity, the idea is to renormalize the size in order to obtain
an interesting object at the limit. More precisely, we pick an object “at random” among those of
volume n in our combinatorial class. It may happen that, once the size properly renormalized, this
random object converges in distribution toward a nontrivial limiting object as n → ∞. A classical
example is that of the standard random walk: we declare that the volume of a discrete walk is its
number of steps and its size its final value. Then, this object has the Brownian motion as scaling
limit: we pick uniformly at random an n-step walk with step-set {−1,+1} and, after scaling the
time by n and the space by

√
n, this random walk weakly converges toward a standard Brownian

motion on [0, 1], by Donsker’s theorem.
The interest of this approach is twofold. On the one hand, the limiting object is a continuous

object often interesting on its own, independently from the fact that it appears as the scaling limit
of a discrete model. On the other hand, the study of the continuous model might reveal asymptotic
properties of the discrete model, which can be hard to directly obtain. Moreover, the limiting object
often possess a universality property: we obtain the same scaling limit for several different (but
bearing some similarities) classes of combinatorial objects. This is for instance the case of Brownian
motion, which appears as the scaling limit of any properly rescaled random walk, provided its
step law is centered and of finite variance. We may also give the example of Aldous’s Continuum
Random Tree (CRT for short) [Ald91, Ald93], which is the scaling limit of many models of discrete
random trees [DLG02].

2.2 A brief history

The natural problem of scaling limits of random maps has generated many studies in the last
decade. The most natural setting is the following. We consider maps as metric spaces, endowed
with their natural graph metric. We choose uniformly at random a map of “size” n in some class,
rescale the metric by the proper factor, and look at the limit in the sense of the Gromov–Hausdorff
topology (defined in Section 2.3). The size considered is often the number of faces of the map.
From this point of view, the most studied class is the class of plane quadrangulations. The pio-
neering work of Chassaing and Schaeffer [CS04] revealed that the proper scaling factor in this case
is n−1/4. The problem was first addressed by Marckert and Mokkadem [MM06], who constructed
a candidate limiting space called the Brownian map, and showed the convergence toward it in an-
other sense. Le Gall [LG07] then showed the relative compactness of this sequence of metric spaces
and that any of its accumulation points was almost surely of Hausdorff dimension 4. It is only re-
cently that the solution of the problem was completed independently by Miermont [Mie13] and
Le Gall [LG13], who showed that the scaling limit is indeed the Brownian map. This last step, how-
ever, is not mandatory in order to identify the topology of the limit: Le Gall and Paulin [LGP08],
and later Miermont [Mie08], showed that any possible limit is homeomorphic to the 2-dimensional
sphere.

This line of reasoning lead the way to several extensions. The first kind of extension is to
consider other classes of plane maps. Actually, Le Gall already considered in [LG07] the classes of
plane κ-angulations, for even κ ≥ 4. In [LG13], he considered the classes of plane κ-angulations
for κ = 3 and for even κ ≥ 4 as well as the case of Boltzmann distributions on bipartite plane
maps, conditioned on their number of vertices. Another extension is due to Addario-Berry and
Albenque [ABA13], who consider simple plane triangulations and simple plane quadrangulations,
that is, plane triangulations and quadrangulations without loops and multiple edges. Beltran et
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Le Gall [BLG13] also studied plane quadrangulations without vertices of degree 1. Together with
Jacob and Miermont [BJM14], we later added the case of plane maps conditioned on their number
of edges, and Abraham [Abr16] considered the case of bipartite plane maps conditioned on their
number of edges. More recently, Marzouk [Mar16] studied bipartite planar maps with a prescribed
degree sequence. In all these cases, the limiting space is always the same Brownian map (up to
a multiplicative constant): we say that the Brownian map is universal and we expect it to arise as
the scaling limit of a lot more of natural classes of maps. A peculiar extension is due to Le Gall
and Miermont [LGM11] who consider maps with large faces, forcing the limit to fall out of this
universality class: they obtain so-called stable maps, which are related to stable processes.

Another kind of extension is to consider quadrangulations on a fixed surface that is no longer
the sphere. The case of orientable surfaces of positive genus was the focus of [Bet10, Bet12] and
the case of the disk was considered in [Bet15]. General quadrangulations with a boundary were
studied in [Bet16]: this is the focus of these notes. The case of nonorientable quadrangulations
without boundary was done in [CD17]. Finally, the more general case of nonorientable surfaces
with a boundary is under study at the moment. In all the latter references, only convergence along
subsequences is shown. In the case of the disk, the whole convergence is shown in [BM15] and,
for general orientable quadrangulations with a boundary, it is the focus of [BM17].

The starting point of these studies is a powerful bijective encoding of the maps in the consid-
ered class by simpler objects. In the case of plane quadrangulations, the bijection in question is
the so-called Cori–Vauquelin–Schaeffer bijection [CV81, Sch98, CS04] and the simpler objects are
trees whose vertices carry integer labels satisfying some conditions. In the other cases, variants of
this bijection are used [BDG04, CMS09, PS06, AB13] and the encoding objects usually have a more
intricate combinatorial structure. Such an encoding will be presented in Section 3 for quadrangu-
lations with a boundary.

2.3 The Gromov–Hausdorff topology

The Gromov–Hausdorff topology was introduced by Gromov [Gro99]. The idea is to compare
metric spaces up to isometry. Roughly speaking, one wants to compare two metric spaces after
isometrically embedding them as best as possible into a common metric space. First, the Hausdorff
distance between two compact subsets A and B of a metric space (X , δ) is defined by

δH(A,B) := inf {ε > 0 : A ⊆ Bε et B ⊆ Aε} ,

where, for any subset X ⊆ X , we denote by Xε := {x ∈ X : δ(x,X) ≤ ε} its ε-neighborhood.
The Gromov–Hausdorff distance between two compact metric spaces (X , δ) and (X ′, δ′) is then
defined by

dGH

(

(X , δ), (X ′, δ′)
)

:= inf
{

δH
(

ϕ(X ), ϕ′(X ′)
)}

,

where the infimum is taken over all isometric embeddings ϕ : X → X ′′ and ϕ′ : X ′ → X ′′ of X
and X ′ into the same metric space (X ′′, δ′′).

Theorem 2 ([BBI01, Theorems 7.3.30 and 7.4.15]). The Gromov–Hausdorff distance defines a metric on
the set of isometry classes of compact metric spaces, making it a Polish space (separable and complete).

The previous definition is not very easy to use in practice. It is often more convenient to use
the following alternate definition. A correspondence between two metric spaces (X , δ) and (X ′, δ′)
is a subset R ⊆ X × X ′ whose projections are X and X ′. In other words, for all x ∈ X , there is at
least one x′ ∈ X ′ for which (x, x′) ∈ R and vice versa. The distortion of the correspondence R is
defined by

dis(R) := sup
{

|δ(x, y)− δ′(x′, y′)| : (x, x′), (y, y′) ∈ R
}

.

Proposition 3 ([BBI01, Theorem 7.3.25]). The Gromov–Hausdorff distance between the two compact
metric spaces (X , δ) and (X ′, δ′) is given by

dGH(X ,X ′) =
1

2
inf
R

dis(R) ,

where the infimum is taken over all correspondences between X and X ′.
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2.4 Brownian surfaces

The aim of these notes is to obtain the following result.

Theorem 4 ([Bet16]). Let us consider an integer p ≥ 0, positive real numbers σ1
∞, . . . , σp

∞ > 0 and a
sequence of p-uples σn = (σ1

n, . . . , σ
p
n) ∈ N

p such that σi
n/

√
2n→ σi

∞, for 1 ≤ i ≤ p. Let qn be uniformly
distributed over Qn,σn

. Then, from any increasing sequence of integers, we may extract a subsequence
(nk)k≥0 such that there exists a random metric space (qσ∞, d

σ
∞) satisfying

(

V (qnk
),

(

9

8nk

)1/4

dqnk

)

(d)−−−−→
k→∞

(

qσ∞, d
σ
∞

)

in the sense of the Gromov–Hausdorff topology.

Remark. The constant (8/9)1/4 is irrelevant in this statement. We chose to let it figure for the sake
of consistency with other works and because of following definitions. This constant is inherent to
the case of quadrangulations: we believe that the same statement should hold with the same limit-
ing spaces for other classes of maps embedded in the same surface and satisfying mild conditions,
up to modifying this constant.

This theorem generalizes the seminal result of Le Gall [LG07] in the spherical case ((g, p) =
(0, 0)) and our approach is widely inspired from his. As we will see later on, the spherical case is
somehow degenerate in the sense that the encoding objects are slightly different. They are in fact
easier to apprehend, but we will mostly leave this case out as it requires a special treatment.

Many questions arise at this point and some knowledge has been gathered on Brownian sur-
faces. We briefly discuss them here but these questions are all beyond the scope of these notes.
The first result to have been obtained is the following:

Proposition 5 ([Bet16]). Regardless of the choice of the sequence of integers, the previous limiting space
(qσ∞, d

σ
∞) is almost surely homeomorphic to Σ

∂
g,p, has Hausdorff dimension 4, and every of the p connected

components of its boundary has Hausdorff dimension 2.

This result generalizes the spherical case, which is due to Le Gall and Paulin [LGP08] and was
shortly later reproved by Miermont [Mie08]. Notice that, although it seems reasonable that the
limiting space will have genus at most g and at most p holes, it is not clear a priori that it will
be homeomorphic to Σ

∂
g,p. We could imagine that some handles “disappear” or that some holes

“merge” into a single hole. This does not happen; loosely speaking, this means that a uniform
quadrangulation is sufficiently well spread over the surface, taking a macroscopic amount of space
inbetween the holes and on every handle. Another noticeable fact is that the boundary of every
hole is homeomorphic to a circle whereas, in the discrete picture, the holes do not in general have
a simple curve as a boundary.

Clearly, the result of Theorem 4 is incomplete as one should wonder whether the extraction of
subsequences is mandatory or not. The answer is no, but this requires a lot more work to obtain.
Using two different approaches, Le Gall [LG13] and Miermont [Mie13] showed in major works that
the extraction is not necessary in the spherical case. It is not necessary in the general case either;
we showed this fact with Miermont in [BM15, BM17] thanks to an approach that roughly consists
in cutting Brownian surfaces into elementary pieces of planar topology to which (a variant of) the
result in the spherical case may be applied. This result validates the terminology of “Brownian
surface.” One might talk about the Brownian torus for instance.

See [Bet16] for a study of the geodesics to a given point. At the present time, there are no uni-
versality results except in the spherical case (as mentioned during Section 2.2) and in the case of
the disk [BM15]. One might also wonder what happens if some σi

∞’s are equal to 0. We believe
that the convergence holds toward the Brownian surface that arises as the scaling limit of quad-
rangulations of the same surface without the corresponding holes. This was proved in [Bet15] in
the case g = 0 and p = 1.
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3 Encoding quadrangulations

Let us now present the bijection allowing to encode quadrangulations by simpler objects. Our
description is a slight reformulation of the Bouttier–Di Francesco–Guitter bijection [BDG04]. We
refer the reader to this reference for proofs (the proof is also outlined in Exercise 3). Throughout
this section, n and p denote nonnegative integers and σ = (σ1, . . . , σp) a p-uple of positive integers.

3.1 From quadrangulations to labeled maps

Let q ∈ Qn,σ be a quadrangulation and v• ∈ V (q) one of its vertices. We assign labels to the
vertices of q as follows: for every vertex v ∈ V (q), we set l(v) := dq(v

•, v). Because q is by definition
bipartite, the labels of both ends of any edge differ by exactly 1. As a result, the internal faces can
be of two types: the labels around the face are either d, d + 1, d + 2, d + 1, or d, d + 1, d, d + 1 for
some d. We add a new edge inside every internal face following the convention depicted on the
left part of Figure 5.

d d

d
d+ 1d+ 1 d+ 2

d+ 1d+ 1 3

4

4

4

5

5

66 6

7

c0i

c1ic2i

c3i

c4i

c5i

c6i

Figure 5: Left. Adding a new edge inside an internal face. Right. Adding σi new edges inside the external face hi. On
this example, σi = 6.

A corner is an angular sector delimited by two successive half-edges in the contour of a face.
The vertex located at the end of the first half-edge is called the vertex incident to the corner. If c is a
corner incident to a vertex v, we write l(c) := l(v) with a slight abuse of notation. For each i, we let
c0i , c1i , . . . , c2σ

i−1
i be the corners of hi read in clockwise order, starting at an arbitrary corner (and

we use the convention c2σ
i

i := c0i ). We link together in a cycle the corners cki ’s such that l(ck+1
i ) =

l(cki ) − 1, as shown on the right part of Figure 5. Note that, because l(ck+1
i ) − l(cki ) ∈ {−1,+1},

there are exactly σi such corners.
We then only keep the new edges we added and the vertices in V (q)\{v•}. The object we obtain

is a labeled map m of genus g with p + 1 faces. There is an obvious correspondence between the
external faces of q and p of the faces of m. Let h1, . . . , hp also denote these faces in m. Note that, by
construction, these faces all have a simple boundary and are of degrees σ1, . . . , σp. Remark also
that v• lies within the remaining face of m, which we denote by f•.

f•

v• v•

q

h1

h1

h2

h2

h3
h3

0 01

1

11

1

1

11

1

1

11

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

23

3
3 3

3 3

3

3
3 3

3 3

3

3
3 3

3 3

4 44

Figure 6: The construction for a map in Q12,(2,4,1) in the case g = 0.

We root the map m as follows. Let e be the only half-edge among the root of q and its reverse
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such that l(e+) = l(e−) + 1, and let f be the face of q that is incident to e. If f is an internal face,
the root of m is the half-edge corresponding to the edge we added in f , directed from e+. If f is
an external face, there are two new half-edges inside f starting from e+; the root of m is the one
incident to f•. See Figure 7.

f f

d d
d+ 1 d+ 1

Figure 7: Rooting the map m. On the picture, the two possible roots for q yielding the same root for m are shown.

For each i, let ~h1i , ~h2i , . . . , ~hσ
i

i be the half-edges incident to hi in m, read in counterclockwise
order around it. The labels of m satisfy the following:

⋄ for 1 ≤ i ≤ p and 1 ≤ j ≤ σi, we have l(~hj−i )− l(~hj+i ) ≥ −1;

⋄ for any half-edge e ∈ ~E(m) such that neither e nor its reverse ē is incident to an hi, we have
|l(e+)− l(e−)| ≤ 1.

We will consider the labels of m up to an additive constant: we write

[l] := {v ∈ V (m) 7→ l(v) + a : a ∈ Z}

the class of l for this equivalence relation. We say that two faces are adjacent if there exist a half-
edge incident to one and whose reverse is incident to the other. Let Mn,σ denote the set of genus g
maps having n+ |σ| edges (where we write |σ| :=∑p

i=1 σ
i) and p+ 1 faces denoted by h1, . . . , hp,

f• such that, for all i, hi has a simple boundary, is of degree σi and is not adjacent to any other hj ,
and such that the root is not incident to any hole hj . Note that any edge is forbidden to be incident
to two different holes, but there may exist vertices that are incident to two or more holes. We also
denote by Mn,σ the set of pairs whose first coordinate lies in Mn,σ and whose second coordinate
is an equivalence class of labeling functions on the vertices of the map satisfying the two previous
itemized conditions.

Proposition 6. The mapping (q, v•) 7→ (m, [l]) is a two-to-one mapping from the set of quadrangulations
in Qn,σ carrying one distinguished vertex to the set Mn,σ .

3.2 Reverse mapping

Let (m, [l]) ∈ Mn,σ . First, we add inside f• a new vertex v• with label

l(v•) := min
u∈V (m)

l(u)− 1 .

Following the counterclockwise order around f•, we draw arcs linking every corner to the first
subsequent corner that has a strictly smaller label. If no such corners exist, which means that the
corner we are visiting has a minimal label, we draw the arc from the corner to the extra vertex v•.
It is possible to draw these arcs in such a way that they do not cross each other or the edges of m.

When removing the edges of m, we are left with a quadrangulation q. Each hole hi naturally
corresponds to an external face of q, which we also denote by hi. The root of q is defined as the
arc drawn from the corner preceding the root of m, oriented in one direction or the other. The two
pre-images of (m, [l]) are the pairs (q, v•), where q is rooted in the two possible ways.

3.3 Further decomposition

A labeled map (m, [l]) ∈ Mn,σ can be further decomposed into simpler objects: a scheme, which
in some sense accounts for the homotopy type of m, and a collection of forests indexed by some
half-edges of the scheme. The labeling function naturally gives rise to labels on the vertices of
these forests as well as to bridges recording the labels on the cycles of the map m.
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Remark 1. The case (m, [l]) ∈ Mn,∅ in genus 0 is somehow degenerate. Indeed, in this case, m
is merely a plane tree and cannot be further decomposed in our sense. This is the original case
treated in [LG07].

From now on, we exclude the case (g, p) = (0, 0).

Remark 2. Up to a slight difference caused by the root, a scheme is sometimes called kernel in
graph theory. We chose to stick with the terminology of scheme, which seems more common in
the context of maps.

3.3.1 Decomposition of the map

Let us first focus on the map m and keep the labels for later. We refer to Figure 10 for visual
support. We iteratively remove from m all its vertices of degree 1 that are not extremities of its
root e∗. The set of vertices remaining at this point is called the floor of m. Among these vertices,
some are called nodes: all vertices of degree 3 or more are nodes and,

⋄ if e−∗ is of degree 1, then e−∗ is a node;

⋄ if e+∗ is of degree 1, then e+∗ is a node;

⋄ if neither e−∗ nor e+∗ has degree 1, then e−∗ is a node.

On this map, the vertices that are not nodes are of degree 2 and are arranged into chains joining
nodes. We define the map s by replacing each of these chains by a single edge. The root of s is
defined as the edge replacing the chain that contains e∗, oriented in the same direction as e∗. The
map s is a scheme in the following sense.

Definition 2. A genus g scheme with p holes is a genus g map with p + 1 faces denoted by h1, . . . , hp,
f•, whose root is not incident to any hj , and that satisfies the following conditions. For all i, hi has a simple
boundary and is not adjacent to any hj . There may only be one vertex with degree 1 or 2: if it has degree 1,
then it is an extremity of the root; if it has degree 2, then it is the origin of the root.

Remark. A more conventional definition would be to forbid vertices of degree less than 2. Our
choice of “keeping the root present” in the scheme is done for combinatorial reasons.

Let Sp be the finite set of (genus g) schemes with p holes. For example, in genus g = 0, the set
S1 contains the three maps represented on Figure 8.

h1h1h1

f•f•f•

Figure 8: The three elements of S1 in genus g = 0.

We will use the following formalism for forests.

Definition 3. A forest of length ξ ≥ 1 and mass m ≥ 0 is an ordered family of ξ trees (which can be
defined as plane one-faced maps) with total number of edges equal to m. Let Fm

ξ denote the set of these
forests.

It will be convenient to systematically add a ξ + 1-th tree to a forest of Fm
ξ consisting of one

single vertex. The floor of a forest is the set of the root vertices of its trees, with the extra vertex-tree
included. In the drawings, we will also add extra edges linking the elements of the floor (as on
Figure 10).
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The half-edges of the scheme s are of several different types. Let ~Hi(s) be the set of half-edges
incident to the hole hi and let ~F (s) be the set of half-edges that are not incident to any holes. We
break the set ~F (s) into two subsets: let ~I(s) := {e ∈ ~F (s) : ē ∈ ~F (s)} and ~B(s) := {e ∈ ~F (s) :

ē /∈ ~F (s)}. See Figure 9. The letter I stands for “internal half-edges” and B stands for “boundary
half-edges.”

h1

h2

f•

~H1

~H2

~I

~B

Figure 9: Notation for the different types of half-edges of a genus 1 scheme with 2 holes. The set ~F (s) is the disjoint

union of ~B(s) and ~I(s).

Every half-edge e ∈ ~F (s) naturally corresponds to a forest fe defined as follows. Let e′ ∈ ~F (s)
be the half-edge preceding e in the contour order of f•. By definition, the half-edges e and e′

correspond to chains of half-edges in m: let ê and ê′ be the last half-edges of these chains. The
forest fe corresponds to the set of half-edges in m visited between ê′ and ê (ê′ excluded, ê included)
in the contour order of f•. See Figure 10.

For e ∈ ~F (s), we denote by ξe ≥ 1 and me ≥ 0 the length and mass of fe (so that fe ∈ Fme

ξe ).

Proposition 7. The above decomposition provides a bijection between the set Mn,σ and the set of all pairs

(

s, (fe)e∈~F (s)

)

where s ∈ Sp and such that there exist a collection of positive integers (ξe)e∈ ~E(s) and a collection of

nonnegative integers (me)e∈~F (s) satisfying the following:

⋄ for all e ∈ ~F (s), fe ∈ Fme

ξe ;

⋄ for all e ∈ ~E(s), ξē = ξe;

⋄ for 0 ≤ i ≤ p,
∑

e∈ ~Hi(s)
ξe = σi;

⋄ ∑e∈~F (s)m
e + 1

2

∑

e∈ ~E(s) ξ
e = n+ |σ|.

3.3.2 Decomposition of the labeled map

Let us now take the labels into consideration. The terminology should become clear in a moment.

Definition 4. We call interior bridge of length ξ ≥ 1 from a ∈ Z to b ∈ Z a sequence of integers
(b(0), . . . , b(ξ)) such that b(0) = a, b(ξ) = b and, for all 0 ≤ i ≤ ξ−1, we have b(i+1)−b(i) ∈ {−1, 0, 1}.
We write Iξ(a, b) the set of these interior bridges.

We call boundary bridge of length ξ ≥ 1 from a ∈ Z to b ∈ Z a sequence (b(0), . . . , b(ξ)) of integers
such that b(0) = a, b(ξ) = b and, for all 0 ≤ i ≤ ξ − 1, we have b(i+ 1)− b(i) ≥ −1. We write Bξ(a, b)
the set of these boundary bridges.

Definition 5. A labeled forest is a pair (f, ℓ) where f is a forest and ℓ : V (f) → Z is a function satisfying
the following:

10



⋄ for all u lying in the floor of f, ℓ(u) = 0;

⋄ if u and v are linked by an edge, then |ℓ(u)− ℓ(v)| ≤ 1.

We denote by Fm
ξ the set of labeled forests of length ξ and mass m.

There is a trivial one-to-one correspondence between the nodes of m and the vertices of s so
that l naturally gives a canonical labeling of the vertices of s as follows. Let v∗ ∈ V (s) be the origin
of the root in s and let v ∈ V (s). We denote by v′∗ and v′ ∈ V (m) the corresponding nodes in m

and we set lv := l(v′) − l(v′∗). Let e ∈ ~F (s). It naturally corresponds to a chain e1, e2, . . . , eξe of
half-edges in m. We define the bridge

be :=
(

l(e−1 )− l(v′∗), l(e
−
2 )− l(v′∗), . . . , l(e

−
ξe)− l(v′∗), l(e

+
ξe)− l(v′∗)

)

.

The constraints on l show that, if e ∈ ~I(s) then be ∈ Iξe(l
e−, le

+

) and, if e ∈ ~B(s) then be ∈
Bξe(l

e−, le
+

). Moreover, the forest fe from last section naturally inherits from l a labeling function le

defined as follows. Let u ∈ V (fe) and let ρ ∈ V (fe) be the root of the tree to which u belongs. These
vertices correspond to two vertices u′ and ρ′ ∈ V (m). We set le(u) := l(u′)− l(ρ′). See Figure 10.

h1

h1

h2

h2f•

f•

(m, [l])

s

be

(fe, le)

0 0

0

0 0

0

0

0 0 0

00

0 0

0

0 0 0

0

0

0 00

0

00 0

0

0 0

0

000

0

0

0

0

0

0

0

0

0

0

0

0

0

0 00

1

1

1 1

1

1

1 1

1

1

1

1

1

1

1

1

1

1 1

2
2

-1 -1

-1

-1 -1

-1

-1-1

-1 -1

-1 -1

-1-1
-1 -1

-1

-1 -1
-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-2

-2

-2

-2

-2

-2

-2-2

-3

-3

Figure 10: Decomposition of a labeled map into a scheme s, a collection of labeled forests (fe, le)e∈~F (s) and a collection
of bridges (be)

e∈~F (s). The bridges have different colors, depending on whether they are interior bridges or boundary
bridges. On the left, the floor and 6 nodes of m are represented in red and with thicker outlines.

Proposition 8. The above decomposition provides a bijection between the set Mn,σ and the set of all triples
(

s, (fe, le)e∈~F (s), (b
e)e∈~F (s)

)

where s ∈ Sp and such that there exist a collection of positive integers (ξe)e∈ ~E(s), a collection of nonnegative

integers (me)e∈~F (s) and a collection of integers (lv)v∈V (s) satisfying the following:

⋄ for all e ∈ ~F (s), (fe, le) ∈ Fme

ξe ;

⋄ for all e ∈ ~E(s), ξē = ξe;

⋄ lv∗ = 0, where v∗ is the origin of the root of s;

⋄ for all e ∈ ~I(s), be ∈ Iξe(l
e−, le

+

) and bē = (be(ξe), . . . , be(0));

⋄ for all e ∈ ~B(s), be ∈ Bξe(l
e−, le

+

);

⋄ for 0 ≤ i ≤ p,
∑

e∈ ~Hi(s)
ξe = σi;

⋄ ∑e∈~F (s)m
e + 1

2

∑

e∈ ~E(s) ξ
e = n+ |σ|.

Note that the three collections of integers are entirely determined by the triple of scheme,
forests and bridges.

11



3.3.3 Encoding by real-valued functions

For e ∈ ~F (s), we encode the labeled forest (fe, le) by its so-called contour pair (Ce, Le) defined as
follows. We see fe as a plane one-faced map with 2me + ξe edges (recall that we add a vertex-tree
at the end and join by edges the elements of the floor). First, let fe(0), fe(1), . . . , fe(2me + ξe) be the
vertices of fe read in counterclockwise order around the face, starting at the first corner of the first
tree. The contour function Ce : [0, 2me + ξe] → R+ and the label function Le : [0, 2me + ξe] → R are
defined by

Ce(i) := dfe
(

fe(i), fe(2me + ξe)
)

and Le(i) := le(fe(i)), 0 ≤ i ≤ 2me + ξe,

and linearly interpolated between integer values (see Figure 11).

11 1

1 22

0

0000 0 0 00

00

0 0

-1 -1 -1-1

-1 -1

-1

-2 -2

fe(0), fe(8)

fe(1), fe(5), fe(7)

fe(2), fe(4)

fe(3)
fe(6)

fe(9)

fe(10)

Ce

Le

Figure 11: The contour pair of a labeled forest from F20
7 . On the right, the paths are dashed on the intervals corresponding

to edges linking elements of the floor.

We also define the function Be : [0, ξe] → R by

Be(i) := be(i), 0 ≤ i ≤ ξe,

and we linearly interpolate it between integer values. We will use the standard notation

X(s) := inf
0≤t≤s

X(t)

for the past infimum of any process X . Remark that the function

s ∈ [0, 2me + ξe] 7→ Le(s) +Be
(

ξe − Ce(s)
)

(1)

records the labels up to an additive constant of the part of m that corresponds to fe. This will
become useful in Section 4.3.

4 Scaling limit

From now on, we fix an integer p ≥ 0 and a sequence σn = (σ1
n, . . . , σ

p
n) ∈ N

p of p-uples such that

σi
(n) :=

σi
n√
2n

→ σi
∞ ∈ (0,∞), 1 ≤ i ≤ p.

We set σ∞ := (σ1
∞, . . . , σ

p
∞) and σ(n) :=

(

σ1
(n), . . . , σ

p
(n)

)

the rescaled version of σn. Recall also that
the genus g ≥ 0 is fixed and that (g, p) 6= (0, 0).

Let qn be a random variable uniformly distributed over the set Qn,σn
and let v•n ∈ V (qn) be one

of its vertices chosen uniformly at random. Let (mn, [ln]) ∈ Mn,σn
be the image of (qn, v•n) through

the two-to-one mapping of Proposition 6 and let
(

sn, (f
e
n, l

e
n)e∈~F (sn)

, (ben)e∈~F (sn)

)

be the decomposition of (mn, [ln]) appearing in Proposition 8. We let (ξen)e∈ ~E(sn)
, (me

n)e∈~F (sn)
and

(lvn)v∈V (sn) be the three collections of integers from Proposition 8. For all e, we also denote by
(Ce

n, L
e
n) the contour pair of (fen, l

e
n) as well as Be

n the interpolation of ben. Finally, we define the
rescaled versions of these objects

me
(n) :=

2me
n + ξen
2n

, ξe(n) :=
ξen√
2n
, lv(n) :=

lvn
(8n/9)1/4

,
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Ce
(n) :=

(

Ce
n(2ns)√
2n

)

0≤s≤me
(n)

, Le
(n) :=

(

Le
n(2ns)

(8n/9)1/4

)

0≤s≤me
(n)

, Be
(n) :=

(

Be
n(
√
2ns)

(8n/9)1/4

)

0≤s≤ξe
(n)

.

The first goal of this section is to give the limit of the joint distribution of these processes. We first
need to introduce the limiting processes.

4.1 Brownian bridges, first-passage Brownian bridges, and Brownian snake

We will work on the space K :=
⋃

x∈R+
C([0, x],R), endowed with the metric

dK(f, g) := |ζ(f)− ζ(g)|+ sup
y≥0

∣

∣f
(

y ∧ ζ(f)
)

− g
(

y ∧ ζ(g)
)
∣

∣ ,

where ζ(f) denotes the only x such that f ∈ C([0, x],R).
We call Brownian bridge of length ξ from a to b a standard Brownian motion on [0, ξ] started

at a, conditioned on being at b at time ξ (see for example [Bil68, RY99, BCP03, Bet10]). We also
call first-passage Brownian bridge of length m from a to b < a a standard Brownian motion on [0,m]
started at a, and conditioned on hitting b for the first time at time m. We refer the reader to [Bet10]
for a proper definition of this conditioning, as well as for some convergence results of the discrete
analogs.

The so-called Brownian snake’s head driven by a process X ∈ C([0, x],R) may be defined as the
process (X(s), Z(s))0≤s≤x, where, conditionally given X , the process Z is a centered Gaussian
process with covariance function

cov
(

Z(s), Z(s′)
)

= inf
s∧s′≤t≤s∨s′

(

X(t)−X(t)
)

.

We refer to [LG99, DLG02, Bet10] for more details about this process.

4.2 Convergence of the encoding elements

In the limit, we will see that only the schemes that maximize the cardinal of ~E remain.

Definition 6. A scheme is dominant if it has one vertex of degree exactly 1 and if all its other vertices are
of degree exactly 3. Let S⋆

p denote the set of (genus g) dominant schemes with p holes.

For instance, the two right-most schemes of Figure 8 are the two elements of S⋆
1 in genus 0.

Note that the degree 1-vertex in the previous definition is necessarily an extremity of the root
and that the dominant schemes are the ones whose number of edges is maximal (see Exercise 2).
Moreover, the condition on the degrees implies that every vertex of a dominant scheme is incident
to at most one hole. In particular, the holes of a dominant scheme are well “separated” in the sense
that their boundaries are pairwise disjoint simple loops, which are connected by some edges.

The compatibility condition on the previous collections of integers lead us to define, for a
scheme s with root e∗, the set Ts of triples

(

(me)e∈~F (s) , (ξ
e)e∈ ~E(s) , (l

v)v∈V (s)

)

∈ R
~F (s)
+ × R

~E(s)
+ × R

V (s)

such that

⋄ ∑e∈~F (s)m
e = 1,

⋄ for all e ∈ ~E(s), ξē = ξe,

⋄ for 0 ≤ i ≤ p,
∑

e∈ ~Hi(s)
ξe = σi

∞

⋄ le
−

∗ = 0.
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We define the measure Ls on Ts as follows. For every 1 ≤ i ≤ p, we distinguish a half-edge
~hi ∈ ~Hi(s). We also consider an orientation Ǐ(s) of ~I(s), that is, a subset of ~I(s) containing exactly
one half-edge among {e, ē} for every e ∈ ~I(s). The measure Ls is defined by

Ls(ϕ) :=

∫

ϕ
(

(me)e∈~F (s) , (ξ
e)e∈ ~E(s) , (l

v)v∈V (s)

)

∏

e∈~F (s)\{e∗}

dme
∏

e∈Ξ

dξe
∏

v∈V (s)\{e−∗ }

dlv

for all measurable function ϕ, where Ξ := Ǐ(s) ∪⋃i
~Hi(s)\{~hi}. Note that this definition does not

depend on the choice of Ǐ(s).
We denote by pa the density of a centered Gaussian variable with variance a > 0, as well as −qa

its derivative:

pa(x) :=
1√
2π a

exp

(

−x
2

2a

)

and qa(x) =
x

a
pa (x) , x ∈ R.

We let µ be the probability measure on
⋃

s∈S⋆
p,1

{s} × Ts defined, for all measurable function ψ, by

µ(ψ) :=
1

Υ

∑

s∈S⋆
p

∫

Ts

dLs ψ
(

s,
(

(me) , (ξe) , (lv)
))

∏

e∈~F (s)

qme (ξe)
∏

e∈Ǐ(s)∪ ~B(s)

p(κe)2ξe

(

le
+− le

−

)

,

where

κe :=

{

1 if e ∈ ~I(s∞)√
3 if e ∈ ~B(s∞)

and
Υ :=

∑

s∈S⋆
p

∫

Ts

dLs

∏

e∈~F (s)

qme (ξe)
∏

e∈Ǐ(s)∪ ~B(s)

p(κe)2ξe

(

le
+− le

−

)

is a normalization constant.

Proposition 9. The random vector
(

sn,
(

me
(n)

)

e∈~F (sn)
,
(

ξe(n)
)

e∈ ~E(sn)
,
(

lv(n)
)

v∈V (sn)
,
(

Ce
(n), L

e
(n)

)

e∈~F (sn)
,
(

Be
(n)

)

e∈~F (sn)

)

converges in distribution toward a random vector
(

s∞, (m
e
∞)e∈~F (s∞) , (ξ

e
∞)e∈ ~E(s∞) , (l

v
∞)v∈V (s∞) , (C

e
∞, L

e
∞)e∈~F (s∞) , (B

e
∞)e∈~F (s∞)

)

whose law is defined as follows:

⋄ the vector
(

s∞,
(

(me
∞)e∈~F (s∞) , (ξ

e
∞)e∈ ~E(s∞) , (l

v
∞)v∈V (s∞)

))

is distributed according to the prob-

ability measure µ;

⋄ conditionally given this vector,

– the processes (Ce
∞, L

e
∞), e ∈ ~F (s∞) and Be

∞, e ∈ Ǐ(s∞) ∪ ~B(s∞) are independent,

– the process (Ce
∞, L

e
∞) has the law of a Brownian snake’s head driven by a first-passage Brownian

bridge of length me
∞ from ξe∞ to 0,

– the process Be
∞ has the law of a Brownian bridge of length ξe∞ from le

−

∞ to le
+

∞ , multiplied by the
factor κe,

– the bridges are linked through the relation Bē
∞(s) = Be

∞(ξe∞ − s), 0 ≤ s ≤ ξe∞, whenever

e ∈ ~I(s∞).

We will not prove this relatively intuitive proposition in these notes. It is easily obtained by
the method provided in [Bet10] (see in particular Proposition 7 and Section 5, as well as [Bet15,
Proposition 7]).

The factor κe accounts for the fact that the steps of boundary bridges have a larger variance
than the steps of interior bridges (see Exercise 4). This seemingly harmless factor causes some
difficulties for the technical estimates of [Bet15]. Note also that this proposition is the reason why
the factor (8/9)1/4 appears.

Let us emphasize that the limiting scheme s∞ is a.s. dominant and, as such, possesses the
properties observed after Definition 6.
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4.3 Proof of Theorem 4

The general strategy is borrowed from Le Gall’s pioneering paper [LG07]. Recall that qn is uni-
formly distributed over Qn,σn

, that v•n is uniformly distributed over V (qn) and that (mn, [ln]) ∈
Mn,σn

is the labeled map corresponding to (qn, v
•
n).

Maps as quotients of integer intervals

We arrange the corners of the internal face of mn according to the contour order, starting from the
first corner of the forest to which the root belongs4: this gives a natural (non injective) ordering of
the vertices of mn, which we write mn(0), . . . , mn(2n+ |σn|) with a slight abuse of notation. As the
vertex set of mn corresponds to V (qn)\{v•n}, this also provides an ordering qn(0), . . . , qn(2n+ |σn|)
of the vertices of qn. (The fact that v•n is left out will not be important when we take the scaling
limit.)

For i ≤ j, we denote by Ji, jK := [i, j] ∩ Z = {i, i+ 1, . . . , j}. We endow J0, 2n+ |σn|K with the
pseudo-metric dn defined by

dn(i, j) := dqn

(

qn(i), qn(j)
)

.

We define the equivalence relation ∼n on J0, 2n + |σn|K by declaring that i ∼n j if qn(i) = qn(j),
that is, if dn(i, j) = 0. We let πn be the canonical projection from J0, 2n+ |σn|K to J0, 2n+ |σn|K/∼n

and we slightly abuse notation by seeing dn as a metric on the space J0, 2n + |σn|K/∼n
, defined

by dn
(

πn(i), πn(j)
)

:= dn(i, j). In what follows, we will always make the same abuse with every
pseudo-metric. The metric space

(

J0, 2n+ |σn|K/∼n
, dn
)

is then isometric to
(

V (qn)\{v•n}, dqn

)

,
which is at dGH-distance at most 1 from the space

(

V (qn), dqn

)

.
We extend dn to non integer values by linear interpolation: for s, t ∈ [0, 2n+ |σn|],

dn(s, t) := s t dn(⌈s⌉ , ⌈t⌉) + s t dn(⌈s⌉ , ⌊t⌋) + s t dn(⌊s⌋ , ⌈t⌉) + s t dn(⌊s⌋ , ⌊t⌋) , (2)

where ⌊s⌋ := sup{k ∈ Z, k ≤ s}, ⌈s⌉ := ⌊s⌋+ 1, s := s− ⌊s⌋ and s := ⌈s⌉ − s. Beware that dn is no
longer a pseudo-metric on [0, 2n+ |σn|]: indeed, dn(s, s) = 2 s s dn(⌈s⌉ , ⌊s⌋) > 0 as soon as s /∈ Z.
The triangle inequality, however, remains valid for all s, t ∈ [0, 2n+ |σn|].

We define the rescaled version: for s, t ∈ [0, 1], we let

d(n)(s, t) :=

(

9

8n

)1/4

dn
(

(2n+ |σn|) s, (2n+ |σn|) t
)

, (3)

so that

dGH

(

(

1

2n+ |σn|
J0, 2n+ |σn|K/∼n

, d(n)

)

,

(

V (qn),

(

9

8n

)1/4

dqn

)

)

≤
(

9

8n

)1/4

. (4)

Bound on the distances

The next step is to show the tightness of the processes d(n)’s laws. For that matter, we use the
following crucial bound:

dn(i, j) ≤ d◦n(i, j) := ln
(

mn(i)
)

+ ln
(

mn(j)
)

− 2max

(

min
k∈

−−→
Ji,jK

ln
(

mn(k)
)

, min
k∈

−−→
Jj,iK

ln
(

mn(k)
)

)

+ 2

where we set
−−→
Ji, jK :=

{

Ji, jK if i ≤ j,
Ji, 2n+ |σn|K ∪ J0, jK if j < i.

This bound is obtained by considering the path starting from the corner mn(i) and made of the suc-
cessive arcs of the mapping of Section 3.2 until it reaches v•, as well as the similar path for mn(j).
These paths are bound to meet at a vertex with label l − 1, where

l := min
k∈

−−→
Ji,jK

ln
(

mn(k)
)

.
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ln(mn(i))
ln(mn(j))

ln(mn(i))− 1

ln(mn(j))− 1 l

l l − 1

Figure 12: The (red) plain path has length ln(mn(i))− l+1 and the (purple) dashed one has length ln(mn(j))− l+1.
The concatenation of these paths gives a path of desired length.

The claim easily follows; see Figure 12.
Similarly as above, we extend the definition of d◦n to [0, 2n+ |σn|] by (2) and define its rescaled

version d◦(n) by (3) (replacing each occurence of dn with d◦n). In the end, we obtain that

d(n)(s, t) ≤ d◦(n)(s, t) , for all s, t ∈ [0, 1] . (5)

Expression of d◦(n) in terms of the encoding functions

We define the labeling function Ln : [0, 2n+ |σn|] → R of the encoding map by,

Ln(i) := ln
(

mn(i)
)

− ln
(

mn(0)
)

, 0 ≤ i ≤ 2n+ |σn|,

and by linearly interpolating it between integer values. Its rescaled version is then defined by

L(n) :=

(

Ln((2n+ |σn|) s)
(8n/9)1/4

)

0≤s≤1

,

so that

d◦(n)(s, t) = L(n)(s) + L(n)(t)− 2max

(

min
r∈

−−→
[s,t]

L(n)(r), min
r∈

−−→
[t,s]

L(n)(r)

)

+O
(

n
1
4

)

,

where
−−→
[s, t] :=

{

[s, t] if s ≤ t,
[s, 1] ∪ [0, t] if t < s.

Recall (1) expressing the labels of a forest in terms of the encoding functions. Writing e1, . . . , eκn

the half-edges of sn sorted according to its facial order, beginning with the root, we see that L(n) is
the concatenation of the functions

Le
(n) :=

(

Le
(n)(s) +Be

(n)

(

ξe(n) − Ce
(n)(s)

)

)

0≤s≤me
(n)

, e ∈ {e1, . . . , eκn
} .

Tightness of d(n)

We apply Skorokhod’s representation theorem and assume that the convergence of Proposition 9
holds almost surely. In particular, this entails that sn = s∞ for n large enough. We only consider
such n’s from now on and denote by e1, . . . , eκ the half-edges of s∞ sorted as above. Thanks to
Proposition 9 and, as the concatenation is continuous from (K, dK)2 to (K, dK), we see that L(n)

converges in (K, dK) toward a function L∞ defined as the concatenation of the functions

Le
∞ :=

(

Le
∞(s) +Be

∞

(

ξe∞ − Ce
∞(s)

))

0≤s≤me
∞

, e ∈ {e1, . . . , eκ} .

As a result, d◦(n) converges in
(

C([0, 1]2,R), ‖ · ‖∞
)

toward d◦∞ defined by

d◦∞(s, t) := L∞(s) + L∞(t)− 2max

(

min
r∈

−−→
[s,t]

L∞(r), min
r∈

−−→
[t,s]

L∞(r)

)

, 0 ≤ s, t ≤ 1 .

4The choice of the starting point is arbitrary; starting at the first corner of a forest will simplify further expressions.
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Lemma 10. The sequence of the laws of the processes

(

d(n)(s, t)
)

0≤s,t≤1

is tight in the space of probability measure on C([0, 1]2,R).

Proof. First observe that, for every s, s′, t, t′ ∈ [0, 1],
∣

∣d(n)(s, t)− d(n)(s
′, t′)

∣

∣ ≤ d(n)(s, s
′) + d(n)(t, t

′) ≤ d◦(n)(s, s
′) + d◦(n)(t, t

′).

By Fatou’s lemma, we have for every k ∈ N and δ > 0,

lim sup
n→∞

P

(

sup
|s−s′|≤δ

d◦(n)(s, s
′) ≥ 2−k

)

≤ P

(

sup
|s−s′|≤δ

d◦∞(s, s′) ≥ 2−k

)

.

Since d◦∞ is continuous and null on the diagonal, for ε > 0, we may find δk > 0 such that, for n
sufficiently large,

P

(

sup
|s−s′|≤δk

d◦(n)(s, s
′) ≥ 2−k

)

≤ 2−kε. (6)

By taking δk even smaller if necessary, we may assume that the inequality (6) holds for all
n ≥ 1. Summing over k ∈ N, we find that, for every n ≥ 1,

P
(

d(n) ∈ Kε

)

≥ 1− ε,

where

Kε :=

{

f ∈ C([0, 1]2,R) : f(0, 0) = 0, ∀k ∈ N, sup
|s−s′|∧|t−t′|≤δk

|f(s, t)− f(s′, t′)| ≤ 21−k

}

is a compact set. �

Conclusion

Thanks to Lemma 10, there exist a subsequence (nk)k≥0 and a function dσ∞ ∈ C([0, 1]2,R) such that

(

d(nk)(s, t)
)

0≤s,t≤1

(d)−−−−→
k→∞

(dσ∞(s, t))0≤s,t≤1 . (7)

As the functions d(n)’s, the function dσ∞ obeys the triangle inequality. And because dσ∞(s, s) ≤
d◦∞(s, s) = 0 for all s ∈ [0, 1], the function dσ∞ is actually a pseudo-metric. We define the equiva-
lence relation associated with it by saying that s ∼∞ t if dσ∞(s, t) = 0, and we set qσ∞ := [0, 1]/∼∞

.
We claim that the convergence of Theorem 4 holds along the subsequence (nk)k≥0. Using (4),

we need to see that

dGH

((

1

2n+ |σn|
J0, 2n+ |σn|K/∼n

, d(n)

)

,
(

qσ∞, d
σ
∞

)

)

−→ 0 (8)

along the subsequence (nk)k≥0. We will use Proposition 3 in order to show this fact. Recall that
πn : J0, 2n+ |σn|K → J0, 2n+ |σn|K/∼n

is the canonical projection. For s ∈ [0, 1], we let qσ∞(s) be the
equivalence class of s in qσ∞. The set

Rn :=
{(

(2n+ |σn|)−1 πn
(

⌊(2n+ |σn|) s⌋
)

, qσ∞(s)
)

, s ∈ [0, 1]
}

is clearly a correspondence between
(

(2n+ |σn|)−1J0, 2n+ |σn|K/∼n
, d(n)

)

and
(

qσ∞, d
σ
∞

)

. Its distor-
tion is

dis(Rn) = sup
0≤s,t≤1

∣

∣

∣
d(n)

(⌊(2n+ |σn|) s⌋
2n+ |σn|

,
⌊(2n+ |σn|) t⌋

2n+ |σn|

)

− dσ∞(s, t)
∣

∣

∣
,

which, thanks to (7), tends to 0 along the subsequence (nk)k≥0. By Proposition 3, we conclude
that (8) holds.
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4.4 Concluding remark: a bound on d
σ

∞

If we take the limit of the inequality (5) along the subsequence (nk)k≥0, we find dσ∞(s, t) ≤ d◦∞(s, t).
Because d◦∞ does not satisfy the triangle inequality, we may improve this bound by considering
the largest metric on qσ∞ that is smaller than d◦∞: for all a and b ∈ qσ∞, we have

dσ∞(a, b) ≤ d∗∞(a, b) := inf

{

k
∑

i=0

d◦∞(si, ti)

}

where the infimum is taken over all integer k ≥ 0 and all sequences s0, t0, s1, t1,. . . , sk, tk satisfying
a = qσ∞(s0), for all 0 ≤ i ≤ k − 1, ti ∼∞ si+1, and b = qσ∞(tk).

In fact, one can show that dσ∞ = d∗∞ and, as the definition of d∗∞ does not involve the extracted
subsequence (nk)k≥0, one obtains the uniqueness of the limit, that is, the full convergence of The-
orem 4. This is quite complicated and is the scope of [LG13, Mie13, BM15, BM17].
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Exercise sheet

1 Bipartite maps

1. Show that a map is bipartite if and only if every cycle made of edges in the map has an even
number of edges.

2. Show that a plane map is bipartite if and only if all its faces have even degree. What about a
positive genus map?

2 Schemes and dominant schemes

1. Using Euler’s characteristic formula (Proposition 1), show that a genus g scheme with p holes
has

⋄ p+ 1 faces;

⋄ at most 4g + 2p vertices;

⋄ at most 6g + 3p− 1 edges.

2. Let s ∈ Sp. Show that

s ∈ S⋆
p ⇔ s has 4g + 2p vertices ⇔ s has 6g + 3p− 1 edges .

3 The encoding bijection

The aim of this exercise is to show that the mappings of Section 3 are as claimed. We denote by
Q⇀•

n,σ the set of pairs (q, v•) where q ∈ Qn,σ, v• ∈ V (q) and the root of q is such that its end is
closer to v• than its origin. We let Φ : Q⇀•

n,σ → Mn,σ denote the restriction to Q⇀•
n,σ of the mapping

from Section 3.1 and by Ψ : Mn,σ → Q⇀•
n,σ the mapping from Section 3.2 that roots the resulting

quadrangulation away from the origin of the initial root.

1. Let (m, [l]) ∈ Mn,σ and (q, v•) := Ψ(m, [l]).

(a) Show that (q, v•) ∈ Q⇀•
n,σ.

(b) Show that the labels of m are the distances to v• in q and conclude that Φ(q, v•) = (m, [l]).

2. Let (q, v•) ∈ Q⇀•
n,σ and (m, [l]) = Φ(q, v•).

(a) We want to show that the embedded graph m is a p + 1-face map. To this end, we
consider the map whose vertex set is V (q) and whose edges are the edges of q together
with the edges of m. We add inside each face of this map that is not a hole of m a blue
vertex and, for each edge of q, we add a blue dual edge linking the blue vertices of the
two incident faces. We assign to each blue edge a label equal to the minimal label of the
extremities of the edge it crosses.

i. Consider a blue cycle and show that it necessarily circles around v•.
ii. Deduce that m is a map.

iii. Using Euler’s characteristic formula (Proposition 1), show that (m, [l]) ∈ Mn,σ .
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(b) Show that the number of corners of the nonhole face of m is equal to the number of
edges of q and finally that Ψ(m, [l]) = (q, v•).

4 Interior bridges vs boundary bridges: what about this
√
3 ?

We will use in this exercise the following lemma:

Lemma 11 ([Bet10, Lemma 10]). We consider a sequence (Xk)k≥0 of i.i.d. centered integer-valued ran-
dom variables with a moment of order q0 for some q0 ≥ 3. We write η2 := Var(X1) its variance and h

its maximal span5. We define Σi :=
∑i

k=0Xk and still write Σ its linearly interpolated version. Let also
(rn) ∈ Z

N
+ and (ln) ∈ Z

N be two sequences of integers such that

r(n) :=
rn
n

−−−−→
n→∞

r and l(n) :=
ln
η
√
n
−−−−→
n→∞

l.

Let (Bn(i))0≤i≤rn be the process whose law is the law of (Σi)0≤i≤rn conditioned on the event {Σrn = ln},
which we suppose occurs with positive probability. Then, as n goes to infinity, the rescaled process

B(n) :=

(

Bn(ns)

η
√
n

)

0≤s≤r(n)

converges in law toward a Brownian bridge of length r from 0 to l, in the space (K, dK).

We consider two integer sequences (ξn) and (ln) such that

ξ(n) :=
ξn√
2n

−−−−→
n→∞

ξ∞ and l(n) :=
ln

(8n/9)1/4
−−−−→
n→∞

l∞ .

1. Show that, if Bn is uniformly distributed over Iξn(0, ln), then the process

B(n) :=

(

Bn(
√
2ns)

(8n/9)1/4

)

0≤s≤ξ(n)

converges in law toward a Brownian bridge of length ξ∞ from 0 to l∞.

2. Show that, if Bn is uniformly distributed over Bξn(0, ln), then the process

B(n) :=

(

Bn(
√
2ns)

(8n/9)1/4

)

0≤s≤ξ(n)

converges in law toward a Brownian bridge of length ξ∞ from 0 to l∞, multiplied by the
factor

√
3.

5The maximal span of an integer-valued random variable X is the greatest h ∈ N for which there exists an integer a such
that a.s. X ∈ a + hZ.
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