Topologie de la limite d'échelle de cartes aléatoires en genre quelconque

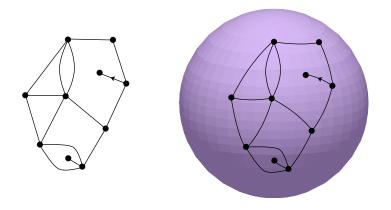
Groupe de travail des thésards du LPMA

Paris

Jérémie BETTINELLI

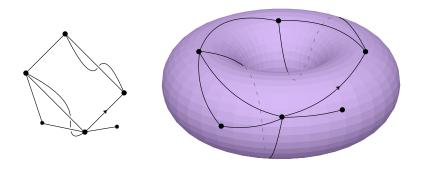
28 avril 2011

Cartes, faces, genre, racine



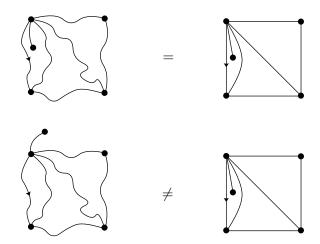
faces homéomorphes à des disques

Cartes, faces, genre, racine

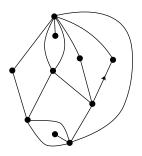


faces homéomorphes à des disques

Cartes isomorphes

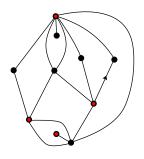


Quadrangulations



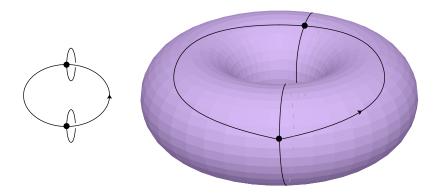
toutes les faces sont de degré 4

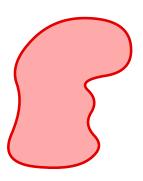
Cartes biparties

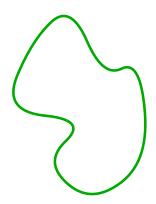


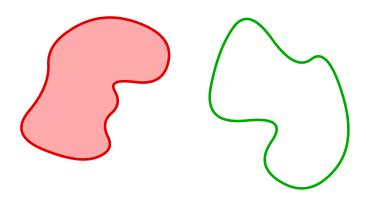
il existe un 2-coloriage des sommets tel qu'aucune arête ne rejoint 2 sommets de même couleur

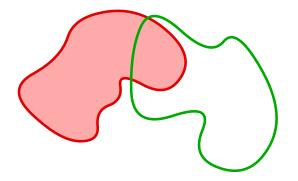
Exemple de quadrangulation non bipartie en genre 1

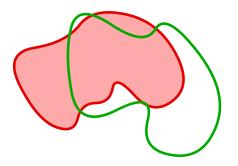


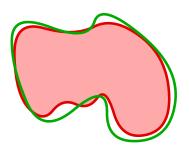


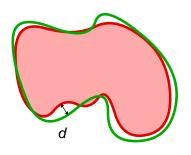












- [X, d] : classe d'isométries de (X, d)
- CM := $\{[X, d], (X, d) \text{ métrique compact}\}$

$$\begin{array}{ll} \textit{d}_{\textit{GH}}\left([\textit{X},\textit{d}],[\textit{X}',\textit{d}']\right) := & \inf\limits_{\left(\textit{Z},\delta\right) \text{ m\'etrique}} & \delta_{\mathcal{H}}\big(\varphi(\textit{X}),\varphi'(\textit{X}')\big) \\ & \varphi:\left(\textit{X},\textit{d}\right) \rightarrow \left(\textit{Z},\delta\right) \\ & \varphi':\left(\textit{X}',\textit{d}'\right) \rightarrow \left(\textit{Z},\delta\right) \end{array}$$

• L'espace (CM, d_{GH}) est polonais.

Limite d'échelle : cas planaire

• q_n uniforme, bipartie, enracinée, n faces, planaire (genre 0)

Théoreme (Le Gall, 07)

L'espace métrique $(q_n, n^{-1/4}d_{q_n})$ tend en loi pour la topologie de Gromov-Hausdorff, le long d'une sous-suite, vers un espace métrique aléatoire limite (q, d).

Théoreme (Le Gall, 07)

La dimension de Hausdorff de (q, d) est p.s. 4.

Théoreme (Le Gall & Paulin, Miermont, 08)

L'espace (q, d) est p.s. homéomorphe à la sphère de \mathbb{R}^3 .

Théoreme (Miermont, 11)

L'espace $(q_n, n^{-1/4}d_{q_n})$ tend en loi vers (q, d).

Limite d'échelle : genre quelconque

q_n uniforme, bipartie, enracinée, n faces, genre g ≥ 1

Théoreme (B., 10)

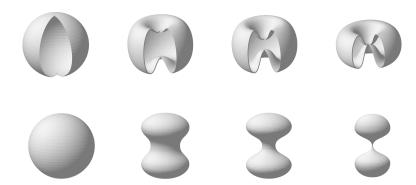
L'espace métrique $(q_n, n^{-1/4}d_{q_n})$ tend en loi pour la topologie de Gromov-Hausdorff, le long d'une sous-suite, vers un espace métrique aléatoire limite (q, d).

Théoreme (B., 10)

La dimension de Hausdorff de (q, d) est p.s. 4.

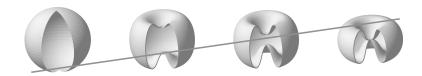
Théoreme (B., 11)

L'espace (q, d) est p.s. homéomorphe au tore à g trous \mathbb{T}_g .



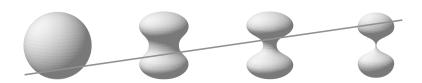
Définition (espace géodésique)

Un espace métrique (\mathcal{X}, d) est un **espace géodésique** si, pour tous $x, y \in \mathcal{X}$, il existe un chemin de x à y isométrique à [0, d(x, y)].



Définition (1-régularité)

Une suite $(\mathcal{X}_n)_n$ d'espace géodésiques est **1-régulière** si pour tout $\varepsilon > 0$, il existe $\delta > 0$ tel que, pour n assez grand, tout lacet de diamètre inférieur à δ dans \mathcal{X}_n est homotope à 0 dans son ε -voisinage.



Définition (espace géodésique)

Un espace métrique (\mathcal{X}, d) est un **espace géodésique** si, pour tous $x, y \in \mathcal{X}$, il existe un chemin de x à y isométrique à [0, d(x, y)].

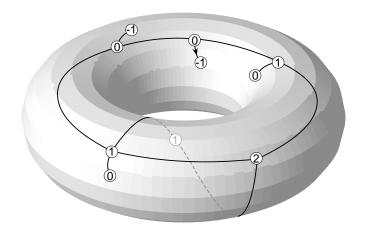
Définition (1-régularité)

Une suite $(\mathcal{X}_n)_n$ d'espace géodésiques est **1-régulière** si pour tout $\varepsilon > 0$, il existe $\delta > 0$ tel que, pour n assez grand, tout lacet de diamètre inférieur à δ dans \mathcal{X}_n est homotope à 0 dans son ε -voisinage.

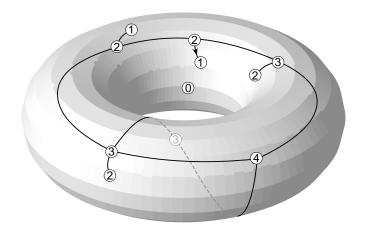
Théoreme (Begle, 44)

Soit $(\mathcal{X}_n)_n$ une suite 1-régulière d'espaces géodésiques homéomorphes au tore \mathbb{T}_g telle que $\mathcal{X}_n \stackrel{\mathsf{GH}}{\longrightarrow} \mathcal{X}$. Alors \mathcal{X} est soit réduit à un point, soit homéomorphe à \mathbb{T}_g .

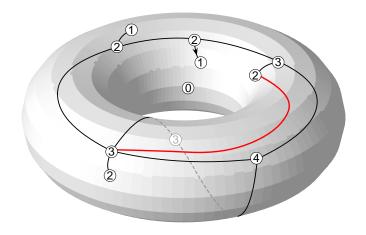
- quad. biparties enracinées pointées à n faces en genre g
- *g*-arbres enracinés bien étiquetés à *n* arêtes, $\epsilon \in \{-1, 1\}$



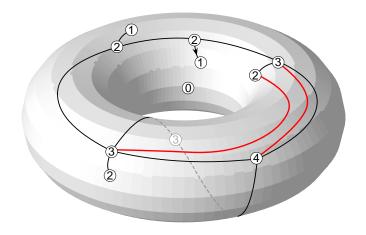
- quad. biparties enracinées pointées à n faces en genre g
- *g*-arbres enracinés bien étiquetés à *n* arêtes, $\epsilon \in \{-1, 1\}$



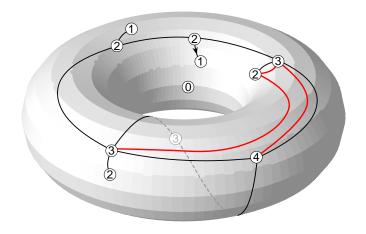
- quad. biparties enracinées pointées à n faces en genre g
- *g*-arbres enracinés bien étiquetés à *n* arêtes, $\epsilon \in \{-1, 1\}$



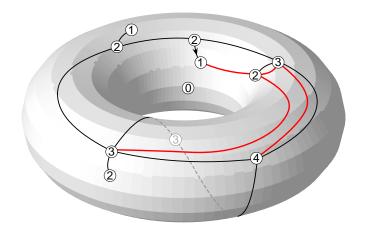
- quad. biparties enracinées pointées à n faces en genre g
- *g*-arbres enracinés bien étiquetés à *n* arêtes, $\epsilon \in \{-1, 1\}$



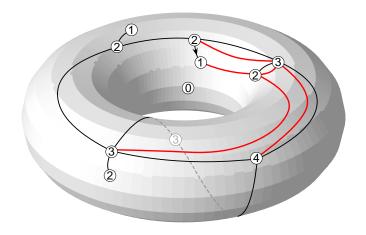
- quad. biparties enracinées pointées à n faces en genre g
- *g*-arbres enracinés bien étiquetés à *n* arêtes, $\epsilon \in \{-1, 1\}$



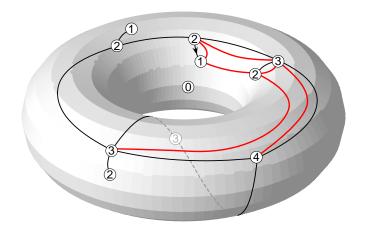
- quad. biparties enracinées pointées à n faces en genre g
- g-arbres enracinés bien étiquetés à n arêtes, $\epsilon \in \{-1, 1\}$



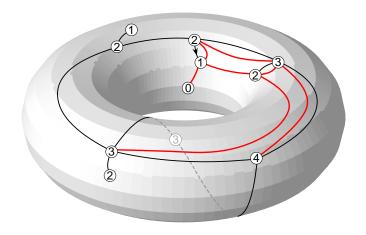
- quad. biparties enracinées pointées à n faces en genre g
- g-arbres enracinés bien étiquetés à n arêtes, $\epsilon \in \{-1, 1\}$



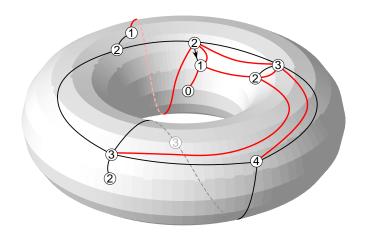
- quad. biparties enracinées pointées à n faces en genre g
- *g*-arbres enracinés bien étiquetés à *n* arêtes, $\epsilon \in \{-1, 1\}$



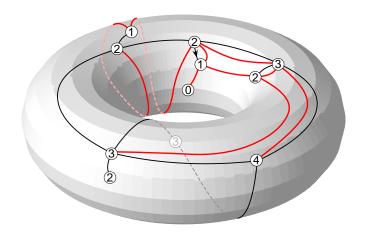
- quad. biparties enracinées pointées à n faces en genre g
- *g*-arbres enracinés bien étiquetés à *n* arêtes, $\epsilon \in \{-1, 1\}$



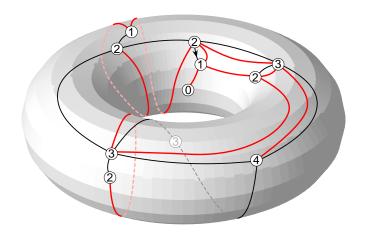
- quad. biparties enracinées pointées à n faces en genre g
- *g*-arbres enracinés bien étiquetés à *n* arêtes, $\epsilon \in \{-1, 1\}$



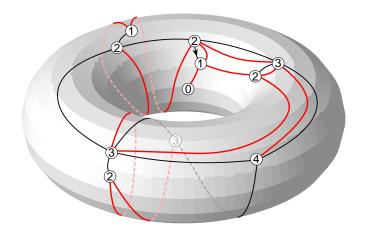
- quad. biparties enracinées pointées à n faces en genre g
- *g*-arbres enracinés bien étiquetés à *n* arêtes, $\epsilon \in \{-1, 1\}$



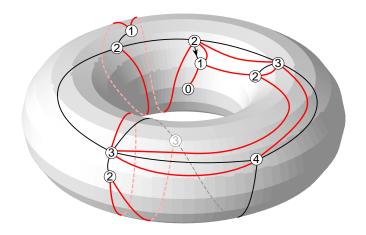
- quad. biparties enracinées pointées à n faces en genre g
- *g*-arbres enracinés bien étiquetés à *n* arêtes, $\epsilon \in \{-1, 1\}$



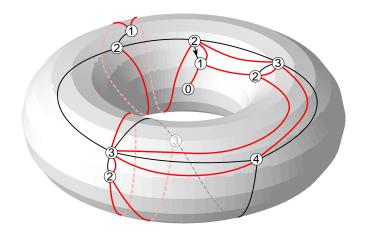
- quad. biparties enracinées pointées à n faces en genre g
- g-arbres enracinés bien étiquetés à n arêtes, $\epsilon \in \{-1, 1\}$



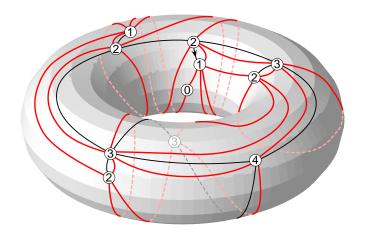
- quad. biparties enracinées pointées à n faces en genre g
- *g*-arbres enracinés bien étiquetés à *n* arêtes, $\epsilon \in \{-1, 1\}$



- quad. biparties enracinées pointées à n faces en genre g
- g-arbres enracinés bien étiquetés à n arêtes, $\epsilon \in \{-1, 1\}$

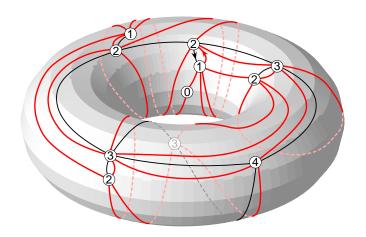


- quad. biparties enracinées pointées à n faces en genre g
- *g*-arbres enracinés bien étiquetés à *n* arêtes, $\epsilon \in \{-1, 1\}$



Bijection de Chapuy-Marcus-Schaeffer

- quad. biparties enracinées pointées à n faces en genre g
- ullet g-arbres enracinés bien étiquetés à n arêtes, $\epsilon \in \{-1,1\}$

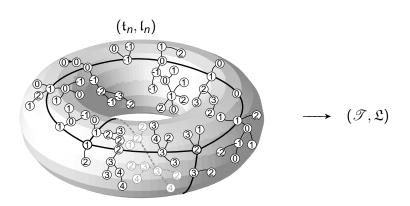


Bijection de Chapuy-Marcus-Schaeffer

- quad. biparties enracinées pointées à n faces en genre g
- *g*-arbres enracinés bien étiquetés à *n* arêtes, $\epsilon \in \{-1, 1\}$



Résultats de convergence



$$(\mathfrak{q}_n, n^{-1/4} d_{\mathfrak{q}_n}) \longrightarrow (\mathfrak{q} = \mathscr{T}_{/\sim}, d)$$

Résultats préliminaires

- $\mathscr T$ est codé par [0,1] : $\mathscr T=[0,1]_{/\simeq}$
- $\mathcal{T}(s)$: classe de $s \in [0,1]$ dans \mathcal{T}
- **feuille**: point $a \in \mathcal{T}$ tell que $\mathcal{T}^{-1}(a)$ est un singleton

Proposition

Si $\mathcal{T}(s)$ n'est pas une feuille, alors pour tout $\varepsilon > 0$,

$$\inf_{\mathscr{T}([s,s+\varepsilon])}\mathfrak{L}<\mathfrak{L}(\mathscr{T}(s)).$$

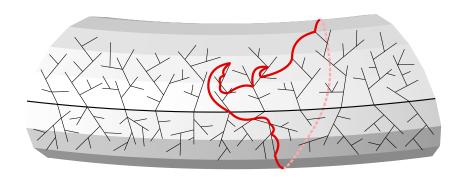
Proposition

Si a et $b \in \mathcal{T}$ sont identifiés dans \mathfrak{q} (i.e. $a \sim b$), alors a et b sont des feuilles.

Absence de petits lacets non contractiles

Lemme

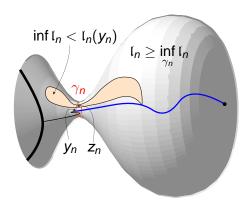
P.s., il existe $\varepsilon_0 > 0$ tel que, pour n assez grand, tout lacet simple non contractile de \mathfrak{q}_n a un diamètre supérieur à ε_0 .



Diamètre de l'intérieur des petits lacets contractiles

Lemme

P.s., pour tout $\varepsilon > 0$, il existe $0 < \delta < \varepsilon \wedge \varepsilon_0$ tel que, pour n assez grand, l'intérieur de tout lacet simple de \mathfrak{q}_n de diamètre inférieur à δ a un diamètre inférieur à ε .



Quelques références

Jérémie Bettinelli.

Scaling limits for random quadrangulations of positive genus.

Electron. J. Probab., 15: no. 52, 1594-1644, 2010.

Jérémie Bettinelli.

The topology of scaling limits of positive genus random quadrangulations.

arXiv:0804.3012, à paraître dans Ann. Probab., 2011.

Jean-François Le Gall.

The topological structure of scaling limits of large planar maps.

Invent. Math., 169(3): 621-670, 2007.

Jean-François Le Gall and Frédéric Paulin.

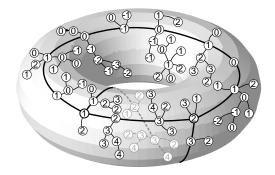
Scaling limits of bipartite planar maps are homeomorphic to the 2-sphere.

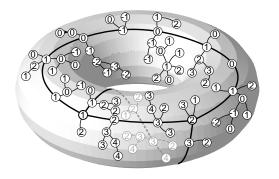
Geom. Funct. Anal., 18(3): 893–918, 2008.

Grégory Miermont.

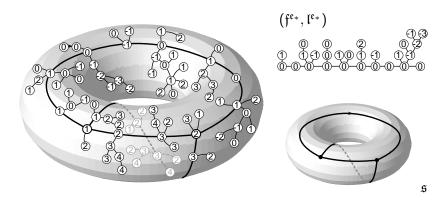
On the sphericity of scaling limits of random planar quadrangulations.

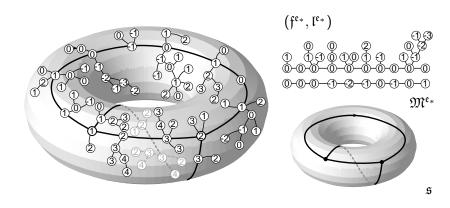
Electron. Commun. Probab., 13: 248-257, 2008.





ĩ





Convergence des forêts et ponts de Motzkin

