

Limite d'échelle de cartes aléatoires en genre quelconque

രം

Jérémie BETTINELLI

26 octobre 2011

M. Jérémie BOUTTIER

M. Jean-François LE GALL

M. Jean-François MARCKERT

M. Grégory MIERMONT

M. Gilles Schaeffer

M. Marc YOR

Examinateur

Examinateur

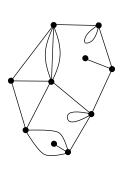
Rapporteur

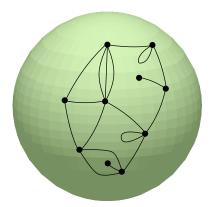
Directeur de thèse

Examinateur

Examinateur

Cartes planaires





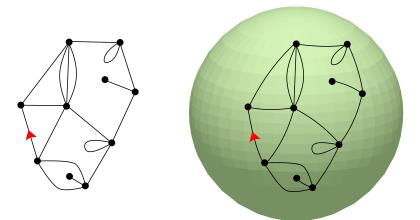
carte planaire : graphe fini connexe plongé dans la sphère **faces** : composantes connexes du complémentaire du graphe

Exemple de carte planaire

faces : pays et étendues d'eau

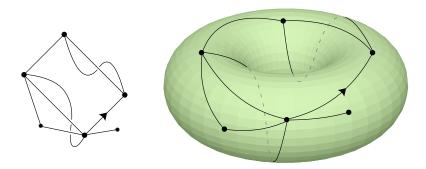
graphe connexe ni îles ni lacs

Cartes enracinées



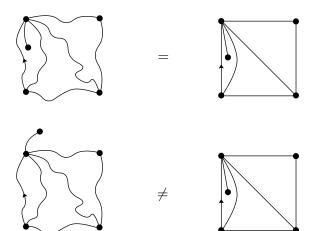
carte enracinée : carte dont une arête orientée est distinguée

Cartes de genre g

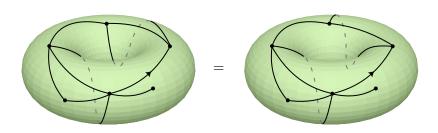


carte de genre g : graphe plongé dans le tore à g trous, de sorte que les faces soient homéomorphes à des disques

Déformation des arêtes



Déformation plus compliquée



on identifie les cartes qui se correspondent via un homéomorphisme de la surface sous-jacente

« À quoi ressemble une carte prise au hasard? »

« À quoi ressemble une carte prise au hasard? »

point de vue

Introduction

On voit \mathfrak{m} comme un espace métrique discret ($V(\mathfrak{m}), d_{\mathfrak{m}}$):

- → V(m): ensemble des sommets de m
- $d_{\mathfrak{m}}(u,v)$: plus petit $k\geq 0$ tel qu'il existe un chemin de karêtes liant u à v

« À quoi ressemble une carte prise au hasard? »

point de vue

Introduction

On voit \mathfrak{m} comme un espace métrique discret ($V(\mathfrak{m}), d_{\mathfrak{m}}$):

- ⋄ V(m): ensemble des sommets de m
- → d_m(u, v): plus petit k ≥ 0 tel qu'il existe un chemin de k
 arêtes liant u à v

hasard

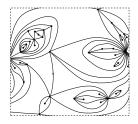
On fixe le genre g et on choisit q_n uniformément parmi les quadrangulations (biparties) de genre g à n faces

$$(V(\mathfrak{q}_n), d_{\mathfrak{q}_n}) \xrightarrow[n \to \infty]{} ?$$

Un peu d'histoire (g = 0)

Angel & Schramm ('02)

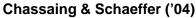
limite locale (triangulations planaires uniformes)



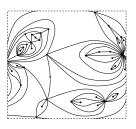
Un peu d'histoire (g = 0)

Angel & Schramm ('02)

limite locale (triangulations planaires uniformes)



 u_n et v_n uniformes dans $V(\mathfrak{q}_n)$ $d_{\mathfrak{q}_n}(u_n, v_n) \sim n^{1/4}$



Un peu d'histoire (g = 0)

Angel & Schramm ('02)

limite locale (triangulations planaires uniformes)

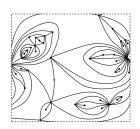
Chassaing & Schaeffer ('04)

 u_n et v_n uniformes dans $V(\mathfrak{q}_n)$ $d_{\mathfrak{q}_n}(u_n, v_n) \sim n^{1/4}$

Marckert & Mokkadem ('06) Le Gall ('07)

limite d'échelle

$$(V(\mathfrak{q}_n), n^{-1/4}d_{\mathfrak{q}_n}) \xrightarrow[n \to \infty]{} ?$$



réalisé par J.-F. Marckert

La carte brownienne (q = 0)

 ϕ q_n uniforme parmi les quadrangulations planaires à n faces

Théoreme (Le Gall '11, Miermont '11)

L'espace métrique $(V(\mathfrak{q}_n), n^{-1/4}d_{\mathfrak{q}_n})$ tend en loi vers un espace limite appelé carte brownienne (à une constante près) au sens de Gromov-Hausdorff.

 $\phi = q_n$ uniforme parmi les quadrangulations planaires à n faces

Théoreme (Le Gall '11, Miermont '11)

L'espace métrique $(V(\mathfrak{q}_n), n^{-1/4}d_{\mathfrak{q}_n})$ tend en loi vers un espace limite appelé **carte brownienne** (à une constante près) au sens de Gromov–Hausdorff.

Définition (Convergence au sens de Gromov-Hausdorff)

Une suite (\mathcal{X}_n) d'espaces métriques compacts **converge au sens de Gromov–Hausdorff** vers un espace métrique \mathcal{X} s'il existe des plongements isométriques $\varphi_n: \mathcal{X}_n \to \mathcal{Z}$ et $\varphi: \mathcal{X} \to \mathcal{Z}$ dans un espace métrique commun \mathcal{Z} tels que $\varphi_n(\mathcal{X}_n)$ converge vers $\varphi(\mathcal{X})$ au sens de Hausdorff.

Théoreme (Le Gall '07)

La dimension de Hausdorff de la carte brownienne est presque sûrement égale à 4.

Théoreme (Le Gall & Paulin '08, Miermont '08)

La carte brownienne est presque sûrement homéomorphe à la sphère de dimension 2.

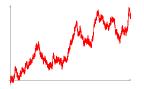
Deux propriétés de la carte brownienne

Théoreme (Le Gall '07)

La dimension de Hausdorff de la carte brownienne est presque sûrement égale à 4.

Théoreme (Le Gall & Paulin '08, Miermont '08)

La carte brownienne est presque sûrement homéomorphe à la sphère de dimension 2.



graphe d'un mouvement brownien

dimension: 3/2

ightharpoonup homéomorphe à $\mathbb R$

Genre quelconque

 ϕ q_n uniforme parmi les quadrangulations biparties à *n* faces de genre $g \ge 1$ fixé

Théoreme (B. '10)

L'espace métrique $(V(\mathfrak{q}_n), n^{-1/4}d_{\mathfrak{q}_n})$ tend en loi, le long d'une sous-suite, vers un espace limite $(\mathfrak{q}_{\infty}, d_{\infty})$.

ce théorème étend des résultats de G. Chapuy qui a montré que les distances typiques étaient, comme dans le cas planaire, de l'ordre de n^{1/4}

Genre quelconque

 ϕ q_n uniforme parmi les quadrangulations biparties à *n* faces de genre $g \ge 1$ **fixé**

Théoreme (B. '10)

L'espace métrique $(V(\mathfrak{q}_n), n^{-1/4}d_{\mathfrak{q}_n})$ tend en loi, le long d'une sous-suite, vers un espace limite $(\mathfrak{q}_{\infty}, d_{\infty})$.

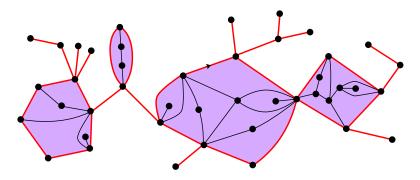
Théoreme (B. '10)

La dimension de Hausdorff de n'importe quel $(\mathfrak{q}_{\infty}, d_{\infty})$ du théorème précédent est presque sûrement égale à 4.

Théoreme (B. '11)

N'importe quel (q_{∞}, d_{∞}) du théorème précédent est presque sûrement homéomorphe au tore à g trous.

Quadrangulations (planaires) à bord



quadrangulation à bord : carte planaire dont toutes les faces sauf éventuellement la face externe sont des quadrangles

le bord n'est pas nécessairement simple

Limite d'échelle : cas générique

- q_n uniforme parmi les quadrangulations à bord avec n faces internes et 2σ_n arêtes sur le bord
- $\Rightarrow \ \sigma_n/\sqrt{2n} \to \sigma \in \]0,\infty[$

Théoreme (B. '11)

L'espace métrique $(V(\mathfrak{q}_n), n^{-1/4}d_{\mathfrak{q}_n})$ tend en loi, le long d'une sous-suite, vers un espace limite $(\mathfrak{q}^{\sigma}, d^{\sigma})$ de dimension 4 p.s.

Théoreme (B. '11)

N'importe quel (q^{σ}, d^{σ}) du théorème précédent est presque sûrement homéomorphe au disque de dimension 2. De plus, sa frontière en est un sous-ensemble de dimension 2 p.s.

Limite d'échelle : cas dégénérés

- q_n uniforme parmi les quadrangulations à bord avec n faces internes et 2σ_n arêtes sur le bord
- $\bullet \ \sigma_n/\sqrt{2n} \to 0$

Théoreme (B. '11)

L'espace métrique $(V(\mathfrak{q}_n), n^{-1/4}d_{\mathfrak{q}_n})$ tend en loi vers la carte brownienne (à la constante du cas sans bord près).

Limite d'échelle : cas dégénérés

- q_n uniforme parmi les quadrangulations à bord avec n faces internes et 2σ_n arêtes sur le bord
- \bullet $\sigma_n/\sqrt{2n} \to 0$

Théoreme (B. '11)

L'espace métrique $(V(\mathfrak{q}_n), n^{-1/4}d_{\mathfrak{q}_n})$ tend en loi vers la carte brownienne (à la constante du cas sans bord près).

$$\star \sigma_n/\sqrt{2n} \to \infty$$

Théoreme (B. '11)

L'espace métrique $(V(\mathfrak{q}_n), (2\sigma_n)^{-1/2}d_{\mathfrak{q}_n})$ tend en loi vers l'arbre continu brownien.

Limite d'échelle : cas dégénérés

Théoreme (B. '11)

L'espace métrique $(V(\mathfrak{q}_n), n^{-1/4}d_{\mathfrak{q}_n})$ tend en loi vers la carte brownienne (à la constante du cas sans bord près).

$$\star \ \sigma_n/\sqrt{2n} \to \infty$$

Théoreme (B. '11)

L'espace métrique $(V(\mathfrak{q}_n), (2\sigma_n)^{-1/2}d_{\mathfrak{q}_n})$ tend en loi vers l'arbre continu brownien.

ces résultats sont en accord avec les travaux récents de J. Bouttier & E. Guitter qui ont observé ces trois régimes dans un contexte de statistiques de distances

Problème

- → T₀: sphère de dimension 2
- $\star \mathbb{T}_q$: tore à g trous ($g \geq 1$)

Question

On a une suite (\mathcal{X}_n) d'espaces métriques compacts tous homéomorphes à \mathbb{T}_q (g fixé) qui converge vers un espace \mathcal{X} . Est-ce que \mathcal{X} est homéomorphe à \mathbb{T}_a ?

Problème

- → T₀: sphère de dimension 2
- \bullet \mathbb{T}_a : tore à g trous ($g \ge 1$)

Question

On a une suite (\mathcal{X}_n) d'espaces métriques compacts tous homéomorphes à \mathbb{T}_q (g fixé) qui converge vers un espace \mathcal{X} . Est-ce que \mathcal{X} est homéomorphe à \mathbb{T}_a ?

Non!

Problème

- → T₀: sphère de dimension 2
- $\star \ \mathbb{T}_g$: tore à g trous ($g \geq 1$)

Question

On a une suite (\mathcal{X}_n) d'espaces métriques compacts tous homéomorphes à \mathbb{T}_g (g fixé) qui converge vers un espace \mathcal{X} . Est-ce que \mathcal{X} est homéomorphe à \mathbb{T}_g ?

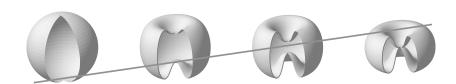
Non!

Limite d'échelle de cartes aléatoires en genre quelconque

0-régularité

Définition (0-régularité)

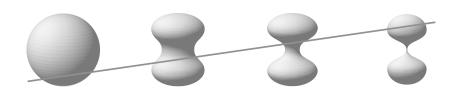
Une suite $(\mathcal{X}_n)_n$ d'espaces métriques compacts est **0-régulière** si pour tout $\varepsilon > 0$, il existe $\eta > 0$ tel que, pour n assez grand, toute paire de points distants de moins de η appartiennent à un sous-ensemble connexe de \mathcal{X}_n dont le diamètre n'excède pas ε .



1-régularité

Définition (1-régularité)

Une suite $(\mathcal{X}_n)_n$ d'espaces métriques compacts est **1-régulière** si pour tout $\varepsilon > 0$, il existe $\eta > 0$ tel que, pour n assez grand, toute boucle de \mathcal{X}_n de diamètre inférieur à η est homotope à 0 dans son ε -voisinage.



Convergence de suites régulières

Théoreme (Begle '44)

Soit $(\mathcal{X}_n)_n$ une suite d'espaces métriques compacts tous homéomorphes à \mathbb{T}_q telle que $\mathcal{X}_n \xrightarrow{GH} \mathcal{X}$. Supposons que $(\mathcal{X}_n)_n$ est à la fois 0 et 1-régulière.

Alors \mathcal{X} est soit homéomorphe à \mathbb{T}_a , soit réduit à un point (ce cas ne pouvant se produire que pour g = 0).

Convergence de suites régulières

Théoreme (Begle '44)

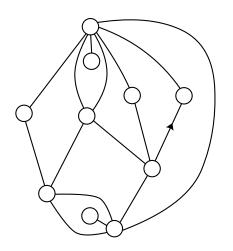
Soit $(\mathcal{X}_n)_n$ une suite d'espaces métriques compacts tous homéomorphes à \mathbb{T}_q telle que $\mathcal{X}_n \xrightarrow{GH} \mathcal{X}$. Supposons que $(\mathcal{X}_n)_n$ est à la fois 0 et 1-régulière.

Alors \mathcal{X} est soit homéomorphe à \mathbb{T}_a , soit réduit à un point (ce cas ne pouvant se produire que pour g = 0).

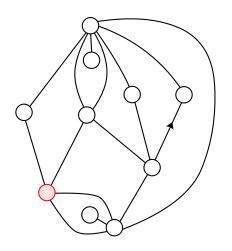
Théoreme (Whyburn '35)

Soit $(\mathcal{X}_n)_n$ une suite d'espaces métriques compacts tous homéomorphes au disque \mathbb{D}_2 telle que $\mathcal{X}_n \xrightarrow{GH} \mathcal{X}$. Supposons que $(\mathcal{X}_n)_n$ est 0 et 1-régulière et de plus que $(\partial \mathcal{X}_n)_n$ est 0-régulière.

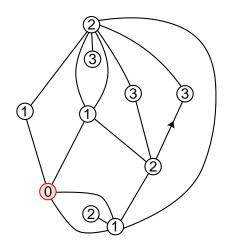
Alors \mathcal{X} est soit homéomorphe à \mathbb{D}_2 , soit réduit à un point.



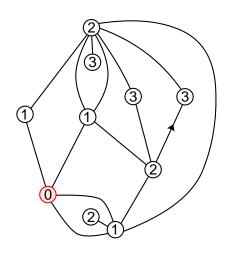
 on part d'une quadrangulation planaire



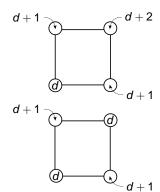
- on part d'une quadrangulation planaire
- on marque un sommet

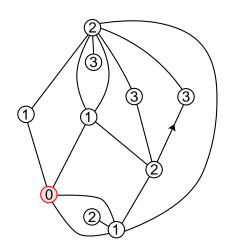


- on part d'une quadrangulation planaire
- on marque un sommet
- on associe à chaque sommet une étiquette valant la distance de ce sommet au sommet marqué

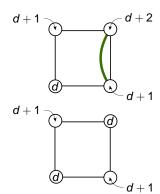


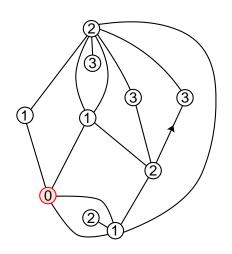
on ajoute une nouvelle arête sur chaque face :

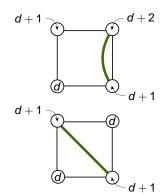


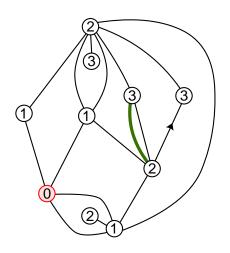


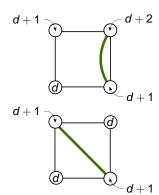
on ajoute une nouvelle arête sur chaque face :

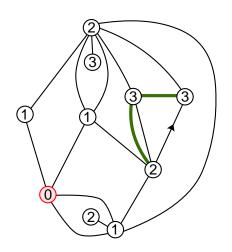


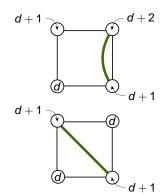


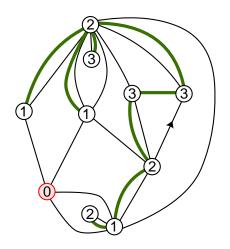


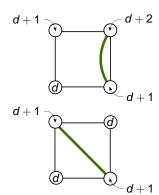


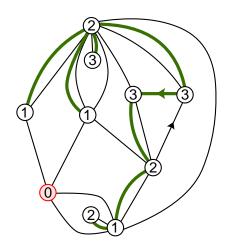




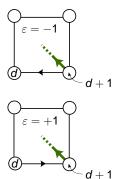


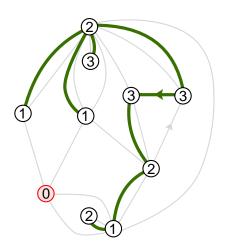




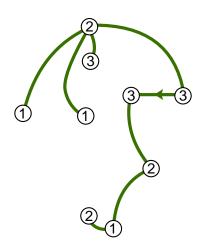


on ajoute une nouvelle racine:

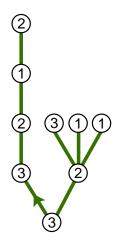




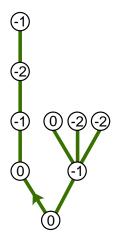
 on efface les anciennes arêtes



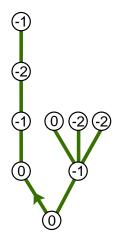
- on efface les anciennes arêtes
- on efface le sommet marqué ()



- on efface les anciennes arêtes
- on efface le sommet marqué ()

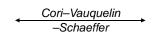


- on efface les anciennes arêtes
- on efface le sommet marqué
- on translate les étiquettes de sorte que le sommet racine soit à 0



- on efface les anciennes arêtes
- on efface le sommet marqué
- on translate les étiquettes de sorte que le sommet racine soit à 0
- on obtient un arbre bien étiqueté

Codage des cartes par des objets plus simples



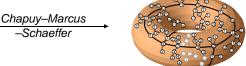
arbre bien étiqueté

Codage des cartes par des objets plus simples

Cori-Vauquelin -Schaeffer

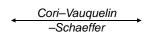
quad. planaire

quad. bip. de genre g



g-arbre bien étiqueté

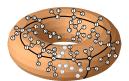
Codage des cartes par des objets plus simples



arbre bien étiqueté

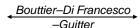
quad. bip. de genre g

Chapuy–Marcus
–Schaeffer

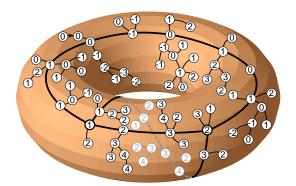


g-arbre bien étiqueté

quad. à bord



forêt bien étiquetée (+ pont)



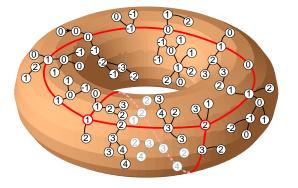
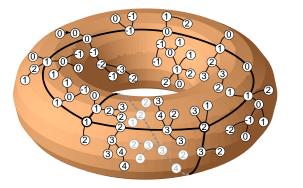
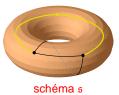
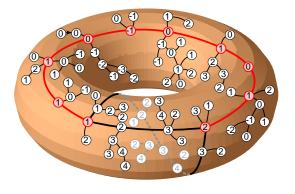


schéma s





À chaque arête de s, on associe :



0.0-0-1-2-1-0-1-0-1

À chaque arête de s, on associe :

un pont de Motzkin

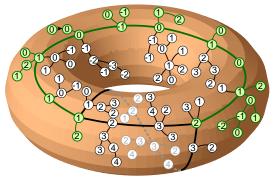


schéma s

À chaque arête de s, on associe :

- un pont de Motzkin
- deux forêts bien étiquetées

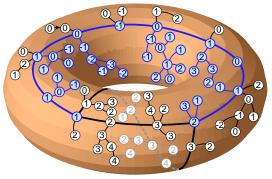
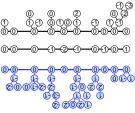
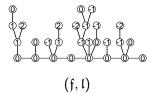


schéma s

- un pont de Motzkin
- → deux forêts bien étiquetées

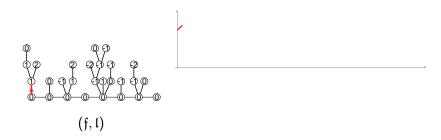


 $(\mathfrak{f},\mathfrak{l})$: forêt bien étiquetée



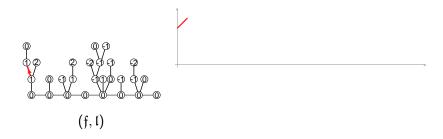
(f, l): forêt bien étiquetée

→ C^f: fonction de contour



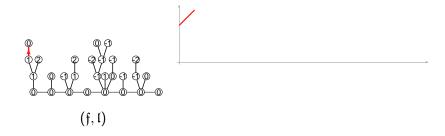
 $(\mathfrak{f},\mathfrak{l})$: forêt bien étiquetée

→ C^f: fonction de contour



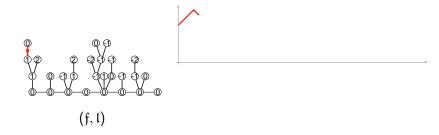
 $(\mathfrak{f},\mathfrak{l})$: forêt bien étiquetée

⋄ C^f: fonction de contour



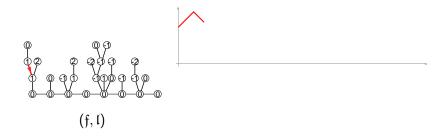
(f, l): forêt bien étiquetée

→ C^f: fonction de contour



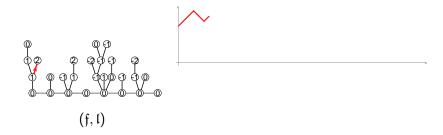
 $(\mathfrak{f},\mathfrak{l})$: forêt bien étiquetée

C^f: fonction de contour



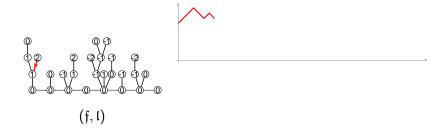
 $(\mathfrak{f},\mathfrak{l})$: forêt bien étiquetée

→ C^f: fonction de contour



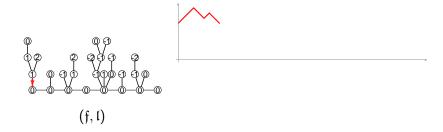
 $(\mathfrak{f},\mathfrak{l})$: forêt bien étiquetée

→ C^f: fonction de contour



 $(\mathfrak{f},\mathfrak{l})$: forêt bien étiquetée

C^f: fonction de contour

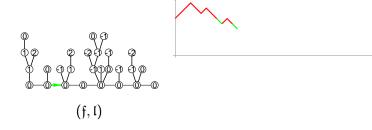


 $(\mathfrak{f},\mathfrak{l})$: forêt bien étiquetée

C^f: fonction de contour

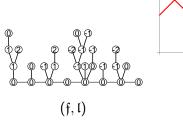
 $(\mathfrak{f},\mathfrak{l})$: forêt bien étiquetée

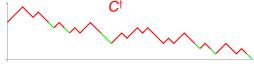
→ C^f: fonction de contour



 $(\mathfrak{f},\mathfrak{l})$: forêt bien étiquetée

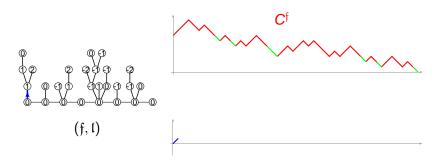
→ C^f: fonction de contour





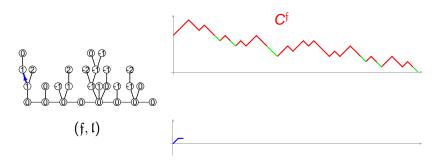
 $(\mathfrak{f},\mathfrak{l})$: forêt bien étiquetée

→ C^f: fonction de contour



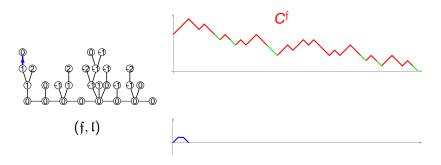
 $\left(\mathfrak{f},\mathfrak{l}\right)$: forêt bien étiquetée

→ C^f: fonction de contour



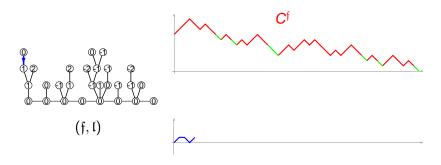
 $(\mathfrak{f},\mathfrak{l})$: forêt bien étiquetée

→ C^f: fonction de contour



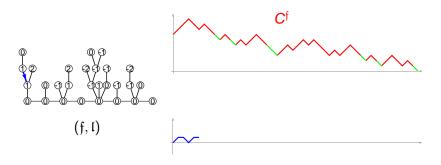
 $\left(\mathfrak{f},\mathfrak{l}\right)$: forêt bien étiquetée

C^f: fonction de contour



 $\left(\mathfrak{f},\mathfrak{l}\right)$: forêt bien étiquetée

→ C^f: fonction de contour

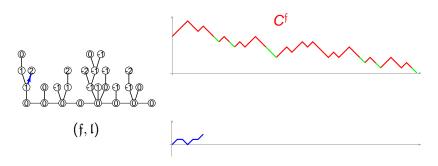


Fonctions de contour et d'étiquetage

 $(\mathfrak{f},\mathfrak{l})$: forêt bien étiquetée

C^f: fonction de contour

→ L^(f,l): fonction d'étiquetage

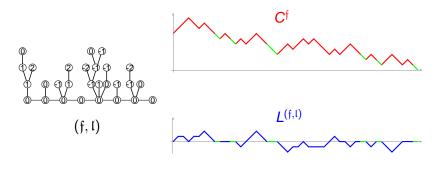


Fonctions de contour et d'étiquetage

 $(\mathfrak{f},\mathfrak{l})$: forêt bien étiquetée

→ C^f: fonction de contour

→ L^(f,l): fonction d'étiquetage



Limite d'échelle des fonctions de codage

- + $(\mathfrak{f}_n, \mathfrak{l}_n)$ forêt bien étiquetée à n arêtes et σ_n arbres uniforme
- $\bullet \ \, \left(C_n, L_n \right) := \left(C^{\mathfrak{f}_n}, L^{(\mathfrak{f}_n, \mathfrak{l}_n)} \right)$

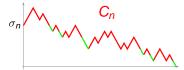
Proposition

Supposons que $\sigma_n/\sqrt{2n} \to \sigma \in]0,\infty[$. Alors le processus

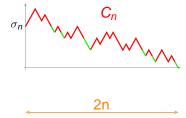
$$\left(\left(\frac{C_n(2ns)}{\sqrt{2n}}\right)_{0\leq s\leq 1}, \left(\frac{L_n(2ns)}{(8n/9)^{1/4}}\right)_{0\leq s\leq 1}\right)$$

tend en loi, pour la topologie uniforme sur $\mathscr{C}([0,1],\mathbb{R})^2$, vers la tête du **serpent brownien** dirigé par un pont de premier passage.

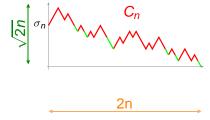
$$\left(\left(\frac{C_n(2ns)}{\sqrt{2n}}\right)_{0\leq s\leq 1},\right.$$



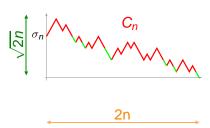
$$\left(\left(\frac{C_n(2ns)}{\sqrt{2n}}\right)_{0\leq s\leq 1},\right.$$

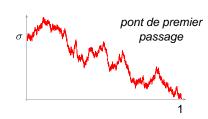


$$\left(\left(\frac{C_n(2ns)}{\sqrt{2n}}\right)_{0\leq s\leq 1},\right.$$

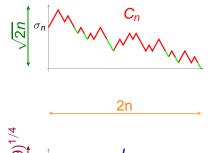


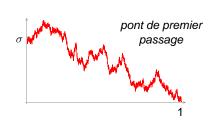
$$\left(\left(\frac{C_n(2ns)}{\sqrt{2n}}\right)_{0\leq s\leq 1},\right.$$



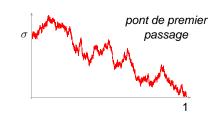


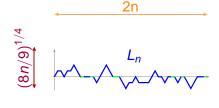
$$\left(\left(\frac{C_n(2ns)}{\sqrt{2n}}\right)_{0\leq s\leq 1}, \ \left(\frac{L_n(2ns)}{(8n/9)^{1/4}}\right)_{0\leq s\leq 1}\right)$$

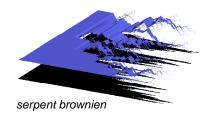




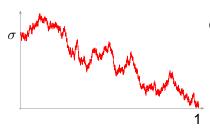
$$\left(\left(\frac{C_n(2ns)}{\sqrt{2n}}\right)_{0\leq s\leq 1}, \left(\frac{L_n(2ns)}{(8n/9)^{1/4}}\right)_{0\leq s\leq 1}\right)$$







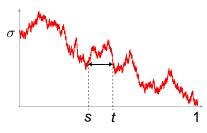
La proposition précédente permet de définir une version continue de forêt bien étiquetée.



Quotient de [0, 1]:

 on identifie les points qui se font face sous le graphe

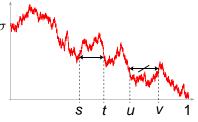
La proposition précédente permet de définir une version continue de forêt bien étiquetée.



Quotient de [0, 1]:

- on identifie les points qui se font face sous le graphe
- \Rightarrow s \sim t

La proposition précédente permet de définir une version continue de forêt bien étiquetée.

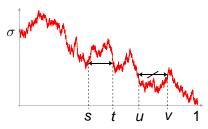


Quotient de [0, 1]:

- on identifie les points qui se font face sous le graphe
- \star s \sim t
- ↓ u

 ✓ \

La proposition précédente permet de définir une version continue de forêt bien étiquetée.



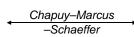
Quotient de [0, 1]:

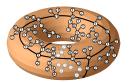
- on identifie les points qui se font face sous le graphe
- \diamond s \sim t
- ↓ u ½ !

On peut munir ce quotient d'étiquettes browniennes telles que les variations le long des "branches de la forêt" soient des mouvement browniens.

arbre bien étiqueté

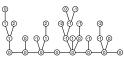
quad. bip. de genre g





g-arbre bien étiqueté

quad. à bord



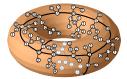
forêt bien étiquetée (+ pont)

quad. planaire

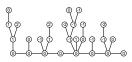
quad. bip. de genre g

quad. à bord

arbre bien étiqueté



g-arbre bien étiqueté

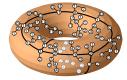


forêt bien étiquetée (+ pont)

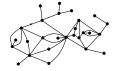
quad. planaire

arbre bien étiqueté

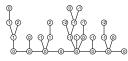
quad. bip. de genre g



g-arbre bien étiqueté



quad. à bord



forêt bien étiquetée (+ pont)

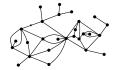
quad. planaire

arbre bien étiqueté

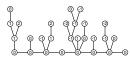
quad. bip. de genre g

g-arbre bien étiqueté

schéma + forêts bien étiquetées (+ ponts)



quad. à bord



forêt bien étiquetée (+ pont)

arbre bien étiqueté

quad. bip. de genre g

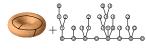
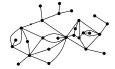
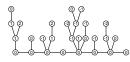


schéma + forêts bien étiquetées (+ ponts)



quad. à bord



forêt bien étiquetée (+ pont)

quad. planaire

arbre bien étiqueté

quad. bip. de genre g

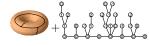
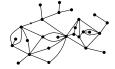


schéma + forêts bien étiquetées (+ ponts)



quad. à bord



forêt bien étiquetée (+ pont)

quad. planaire

arbre bien étiqueté

arbre continu brownien

quad. bip. de genre g

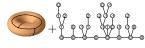
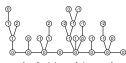


schéma + forêts bien étiquetées (+ ponts)

quad. à bord



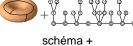
forêt bien étiquetée (+ pont)

quad. planaire

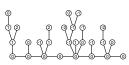
arbre bien étiqueté

arbre continu brownien avec étiquettes browniennes

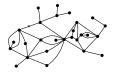
quad. bip. de genre g



forêts bien étiquetées (+ ponts)



forêt bien étiquetée (+ pont)



quad. à bord

quad. planaire

arbre bien étiqueté

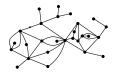
arbre continu brownien avec étiquettes browniennes

quad. bip. de genre g

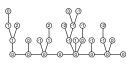
schéma +
forêts bien étiquetées
(+ ponts)

©—© S)

g-arbre brownien
recollement de ponts
browniens puis de forêts
browniennes le long des
arêtes d'un schéma



quad. à bord



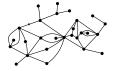
forêt bien étiquetée (+ pont)

quad. planaire

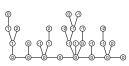
arbre bien étiqueté

schéma + forêts bien étiquetées (+ ponts)

quad. bip. de genre g



quad. à bord



forêt bien étiquetée (+ pont)

arbre continu brownien avec étiquettes browniennes

g-arbre brownien recollement de ponts browniens puis de forêts browniennes le long des arêtes d'un schéma

forêt brownienne

quad. planaire

quad. bip. de genre g



quad. à bord

arbre bien étiqueté

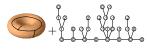
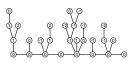


schéma + forêts bien étiquetées (+ ponts)



forêt bien étiquetée (+ pont)

arbre continu brownien avec étiquettes browniennes

g-arbre brownien
recollement de ponts
browniens puis de forêts
browniennes le long des
arêtes d'un schéma

forêt brownienne + pont brownien multiplié par $\sqrt{3}$

Merci de votre attention