Scaling Limit of Arbitrary Genus Random Maps

Jérémie BETTINELLI

February 1, 2012

Planar maps

planar map: finite connected graph embedded in the sphere

faces: connected components of the complement

Example of planar map

faces: countries and bodies of water

connected graph no "enclaves"

Rooted maps

rooted map: map with one distinguished oriented edge

Genus g-maps

Genus *g***-map:** graph embedded in the *g*-torus, in such a way that the faces are homeomorphic to disks

Edge deformation

More complicated deformation

maps are defined up to direct homeomorphism of the underlying surface

"What does a large random map look like?"

"What does a large random map look like?"

point of view

Introduction

We see a map \mathfrak{m} as a discrete metric space $(V(\mathfrak{m}), d_{\mathfrak{m}})$:

- → V(m): vertex set of m
- $d_{\mathfrak{m}}(u, v)$: smallest $k \geq 0$ such that there exists a path with k edges linking u to v

point of view

Introduction

We see a map \mathfrak{m} as a discrete metric space $(V(\mathfrak{m}), d_{\mathfrak{m}})$:

- → V(m): vertex set of m
- → $d_m(u, v)$: smallest $k \ge 0$ such that there exists a path with k edges linking u to v

randomness

We fix the genus g and choose q_n uniformly at random among all genus g (bipartite) quadrangulations with n faces

$$(V(\mathfrak{q}_n), d_{\mathfrak{q}_n}) \xrightarrow[n \to \infty]{} ?$$

Short history (g = 0)

Angel & Schramm ('02)

local limit (random planar triangulations)

Short history (g = 0)

Angel & Schramm ('02)

local limit (random planar triangulations)

Chassaing & Schaeffer ('04)

 u_n and v_n uniform in $V(\mathfrak{q}_n)$ $d_{\mathfrak{q}_n}(u_n, v_n) \sim n^{1/4}$

Short history (g = 0)

Angel & Schramm ('02)

local limit (random planar triangulations)

Chassaing & Schaeffer ('04)

 u_n and v_n uniform in $V(\mathfrak{q}_n)$ $d_{\mathfrak{q}_n}(u_n, v_n) \sim n^{1/4}$

Marckert & Mokkadem ('06) Le Gall ('07)

scaling limit

$$(V(\mathfrak{q}_n), n^{-1/4}d_{\mathfrak{q}_n}) \xrightarrow[n \to \infty]{} ?$$

realized by J.-F. Marckert

Short history (q = 0)

Angel & Schramm ('02)

local limit (random planar triangulations)

Chassaing & Schaeffer ('04)

 u_n and v_n uniform in $V(\mathfrak{q}_n)$ $d_{a_n}(u_n, v_n) \sim n^{1/4}$

Marckert & Mokkadem ('06) Le Gall ('07)

scaling limit

$$(V(\mathfrak{q}_n), n^{-1/4}d_{\mathfrak{q}_n}) \xrightarrow[n \to \infty]{} ?$$

realized by G. Chapuy

The Brownian map (g = 0)

 ϕ q_n uniform among planar quadrangulations with n faces

Theorem (Le Gall '11, Miermont '11)

The metric space $(V(\mathfrak{q}_n), n^{-1/4}d_{\mathfrak{q}_n})$ converges in distribution toward a random metric space, called **the Brownian map** for the Gromov–Hausdorff topology.

The Brownian map (g = 0)

 ϕ q_n uniform among planar quadrangulations with n faces

Theorem (Le Gall '11, Miermont '11)

The metric space $(V(\mathfrak{q}_n), n^{-1/4}d_{\mathfrak{q}_n})$ converges in distribution toward a random metric space, called the Brownian map for the Gromov-Hausdorff topology.

Definition (Convergence for the G–H topology)

A sequence (\mathcal{X}_n) of compact metric spaces **converges for the Gromov–Hausdorff topology** toward a metric space \mathcal{X} if there exist isometric embeddings $\varphi_n: \mathcal{X}_n \to \mathcal{Z}$ and $\varphi: \mathcal{X} \to \mathcal{Z}$ into a common metric space \mathcal{Z} such that $\varphi_n(\mathcal{X}_n)$ converges toward $\varphi(\mathcal{X})$ for the Hausdorff topology.

Two properties of the Brownian map

Theorem (Le Gall '07)

The Hausdorff dimension of the Brownian map is almost surely equal to 4.

Theorem (Le Gall & Paulin '08, Miermont '08)

The Brownian map is almost surely homeomorphic to the 2-dimensional sphere.

Theorem (Le Gall '07)

The Hausdorff dimension of the Brownian map is almost surely equal to 4.

Theorem (Le Gall & Paulin '08, Miermont '08)

The Brownian map is almost surely homeomorphic to the 2-dimensional sphere.

graph of a Brownian motion

- dimension: 3/2
- ♦ homeomorphic to R

Positive (fixed) genus $g \ge 1$

realized by G. Chapuy

Positive (fixed) genus q > 1

 ϕ q_n uniform among bipartite genus g quadrangulations with n faces

Theorem (B. '10)

The metric space $(V(\mathfrak{q}_n), n^{-1/4}d_{\mathfrak{q}_n})$ converges weakly, up to extraction, toward a random metric space $(\mathfrak{q}_{\infty}, d_{\infty})$.

This extends results of G. Chapuy who showed in particular that typical distances were, as in the planar case, of order n^{1/4} q_n uniform among bipartite genus g quadrangulations with n faces

Theorem (B. '10)

The metric space $(V(\mathfrak{q}_n), n^{-1/4}d_{\mathfrak{q}_n})$ converges weakly, up to extraction, toward a random metric space $(\mathfrak{q}_{\infty}, d_{\infty})$.

Theorem (B. '10)

The Hausdorff dimension of any possible (q_{∞}, d_{∞}) from the previous theorem is almost surely equal to 4.

Theorem (B. '11)

Any possible $(\mathfrak{q}_{\infty}, d_{\infty})$ from the previous theorem is almost surely homeomorphic to the genus g-torus.

Planar quadrangulations with a boundary

quadrangulation with a boundary: planar map whose faces are all quadrangles except possibly the external face

The boundary is not required to be a simple curve

Scaling limit: general case

- q_n uniform among quadrangulations with a boundary having n faces and 2σ_n half-edges on the boundary
- $\sigma_n/\sqrt{2n} \to \sigma \in]0,\infty[$

Theorem (B. '11)

The metric space $(V(\mathfrak{q}_n), n^{-1/4}d_{\mathfrak{q}_n})$ converges weakly, up to extraction, toward a metric space $(\mathfrak{q}^{\sigma}, d^{\sigma})$ of dimension 4 a.s.

Theorem (B. '11)

Any possible (q^{σ}, d^{σ}) from the previous theorem is almost surely homeomorphic to the 2-dimensional disk. Moreover, its boundary is of dimension 2 a.s.

Scaling limit: degenerate cases

- q_n uniform among quadrangulations with a boundary having n faces and 2σ_n half-edges on the boundary
- $\star \sigma_n/\sqrt{2n} \to 0$

Theorem (B. '11)

The metric space $(V(\mathfrak{q}_n), n^{-1/4}d_{\mathfrak{q}_n})$ converges weakly toward the Brownian map.

Scaling limit: degenerate cases

- q_n uniform among quadrangulations with a boundary having n faces and 2σ_n half-edges on the boundary
- $\star \sigma_n/\sqrt{2n} \to 0$

Theorem (B. '11)

The metric space $(V(\mathfrak{q}_n), n^{-1/4}d_{\mathfrak{q}_n})$ converges weakly toward the Brownian map.

$$\star \sigma_n/\sqrt{2n} \to \infty$$

Theorem (B. '11)

The metric space $(V(\mathfrak{q}_n), (2\sigma_n)^{-1/2}d_{\mathfrak{q}_n})$ converges weakly toward the Continuum Random Tree.

Scaling limit: degenerate cases

$$\star \ \sigma_n/\sqrt{2n} \to 0$$

Theorem (B. '11)

The metric space $(V(\mathfrak{q}_n), n^{-1/4}d_{\mathfrak{q}_n})$ converges weakly toward the Brownian map.

$$\sigma_n/\sqrt{2n} \to \infty$$

Theorem (B. '11)

The metric space $(V(\mathfrak{q}_n), (2\sigma_n)^{-1/2}d_{\mathfrak{q}_n})$ converges weakly toward the Continuum Random Tree.

These results agree with the recent work of J. Bouttier & E. Guitter who observed these three distinct regimes in a context of distance statistics

Problem

- \bullet T₀: 2-dimensional sphere
- \star \mathbb{T}_q : torus with g holes ($g \geq 1$)

Question

Consider a sequence (\mathcal{X}_n) of compact metric spaces all homeomorphic to \mathbb{T}_q (g is fixed) that converges toward a metric space \mathcal{X} . Is \mathcal{X} homeomorphic to \mathbb{T}_q ?

Problem

- → T₀: 2-dimensional sphere
- \bullet \mathbb{T}_g : torus with g holes ($g \ge 1$)

Question

Consider a sequence (\mathcal{X}_n) of compact metric spaces all homeomorphic to \mathbb{T}_g (g is fixed) that converges toward a metric space \mathcal{X} . Is \mathcal{X} homeomorphic to \mathbb{T}_g ?

No!

- → T₀: 2-dimensional sphere
- \bullet \mathbb{T}_g : torus with g holes ($g \ge 1$)

Question

Consider a sequence (\mathcal{X}_n) of compact metric spaces all homeomorphic to \mathbb{T}_g (g is fixed) that converges toward a metric space \mathcal{X} . Is \mathcal{X} homeomorphic to \mathbb{T}_g ?

No!

0-regularity

Definition (0-regularity)

A sequence $(\mathcal{X}_n)_n$ of compact metric spaces is **0-regular** if for every $\varepsilon > 0$, there exists $\eta > 0$ such that, for *n* large enough, any two points lying at distance less than η are in a connected subset of \mathcal{X}_n with diameter smaller than ε .

1-regularity

Definition (1-regularity)

A sequence $(\mathcal{X}_n)_n$ of compact metric spaces is **1-regular** if for every $\varepsilon > 0$, there exists $\eta > 0$ such that, for *n* large enough, every loop of diameter less than η in \mathcal{X}_n is homotopic to 0 in its ε -neighborhood.

Convergence of regular sequences

Theorem (Begle '44)

Let $(\mathcal{X}_n)_n$ be a sequence of compact metric spaces all homeomorphic to \mathbb{T}_q such that $\mathcal{X}_n \xrightarrow{GH} \mathcal{X}$. Suppose that $(\mathcal{X}_n)_n$ is both 0 and 1-regular.

Then \mathcal{X} is either homeomorphic to \mathbb{T}_q or reduced to a single point (this case can only happen when g = 0).

Convergence of regular sequences

Theorem (Begle '44)

Let $(\mathcal{X}_n)_n$ be a sequence of compact metric spaces all homeomorphic to \mathbb{T}_q such that $\mathcal{X}_n \xrightarrow{GH} \mathcal{X}$. Suppose that $(\mathcal{X}_n)_n$ is both 0 and 1-regular.

Then \mathcal{X} is either homeomorphic to \mathbb{T}_q or reduced to a single point (this case can only happen when g = 0).

Theorem (Whyburn '35)

Let $(\mathcal{X}_n)_n$ be a sequence of compact metric spaces all homeomorphic to the 2- dimensional disc \mathbb{D}_2 such that $\mathcal{X}_n \xrightarrow{GH} \mathcal{X}$. Suppose that $(\mathcal{X}_n)_n$ is both 0 and 1-regular, and that $(\partial \mathcal{X}_n)_n$ is 0-regular.

Then \mathcal{X} is either homeomorphic to \mathbb{D}_2 or reduced to a point.

Cori-Vauquelin-Schaeffer's bijection

 we start with a planar quadrangulation

Cori-Vauquelin-Schaeffer's bijection

- we start with a planar quadrangulation
- we select a vertex

Cori-Vauquelin-Schaeffer's bijection

- we start with a planar quadrangulation
 - we select a vertex
- we label each vertex with its distance to the selected vertex

we add a new root:

we delete the old edges

- we delete the old edges
- we delete the selected vertex

- we delete the old edges
- we delete the selected vertex

- we delete the old edges
- we delete the selected vertex
- we shift the labels in such a way that the root vertex has label 0

- we delete the old edges
- we delete the selected vertex
- we shift the labels in such a way that the root vertex has label 0
- we obtain a well-labeled tree

Coding maps with simpler objects

well-labeled tree

Coding maps with simpler objects

well-labeled tree

planar quad.

genus g bip. quad.

well-labeled g-tree

Coding maps with simpler objects

well-labeled tree

Chapuy–Marcus
–Schaeffer

well-labeled g-tree

quad. with a bdry

well-labeled forest (+ bridge)

scheme s

With each edge of \mathfrak{s} , we associate:

0.0-0-1-2-1-0-1

With each edge of \mathfrak{s} , we associate:

→ a Motzkin bridge

scheme s

With each edge of \mathfrak{s} , we associate:

- a Motzkin bridge

scheme s

With each edge of \mathfrak{s} , we associate:

- a Motzkin bridge

(f, l): well-labeled forest

 $(\mathfrak{f},\mathfrak{l})$: well-labeled forest

(f, l): well-labeled forest

(f, l): well-labeled forest

 $(\mathfrak{f},\mathfrak{l})$: well-labeled forest

 $(\mathfrak{f},\mathfrak{l})$: well-labeled forest

(f, l): well-labeled forest

 $(\mathfrak{f},\mathfrak{l})$: well-labeled forest

- → C^f: contour function
- ♦ L^(f,t): labeling function

 $(\mathfrak{f},\mathfrak{l})$: well-labeled forest

- → C^f: contour function
- $\downarrow L^{(f,l)}$: labeling function

 $(\mathfrak{f},\mathfrak{l})$: well-labeled forest

- → C^f: contour function

- → C^f: contour function

- → C^f: contour function
- ♦ L^(f,t): labeling function

- → C^f: contour function
- → L^(f,l): labeling function

- → C^f: contour function

Scaling limit of the contour pair

- (f_n, l_n) uniform well-labeled forest with n edges and σ_n trees
- $\diamond\ \left(\textit{\textit{C}}_{\textit{n}},\textit{\textit{L}}_{\textit{n}}\right) := \left(\textit{\textit{C}}^{\mathfrak{f}_{\textit{n}}},\textit{\textit{L}}^{\left(\mathfrak{f}_{\textit{n}},\mathfrak{l}_{\textit{n}}\right)}\right)$ its contour pair

Proposition

Suppose that $\sigma_n/\sqrt{2n} \to \sigma \in]0,\infty[$. Then the process

$$\left(\left(\frac{C_n(2ns)}{\sqrt{2n}}\right)_{0\leq s\leq 1}, \left(\frac{L_n(2ns)}{(8n/9)^{1/4}}\right)_{0\leq s\leq 1}\right)$$

converges weakly, for the uniform topology on $\mathscr{C}([0,1],\mathbb{R})^2$, toward the **Brownian snake**'s head directed by a first-passage Brownian bridge.

$$\left(\left(\frac{C_n(2ns)}{\sqrt{2n}}\right)_{0\leq s\leq 1},\right.$$

$$\left(\left(\frac{C_n(2ns)}{\sqrt{2n}}\right)_{0\leq s\leq 1},\right.$$

$$\left(\left(\frac{C_n(2ns)}{\sqrt{2n}}\right)_{0\leq s\leq 1},\right.$$

$$\left(\left(\frac{C_n(2ns)}{\sqrt{2n}}\right)_{0\leq s\leq 1}$$

$$\left(\left(\frac{C_n(2ns)}{\sqrt{2n}}\right)_{0\leq s\leq 1}, \ \left(\frac{L_n(2ns)}{(8n/9)^{1/4}}\right)_{0\leq s\leq 1}\right)$$

$$\left(\left(\frac{C_n(2ns)}{\sqrt{2n}}\right)_{0\leq s\leq 1}, \left(\frac{L_n(2ns)}{(8n/9)^{1/4}}\right)_{0\leq s\leq 1}\right)$$

The previous proposition allows to define a continuous version of well-labeled forest.

Quotient of [0, 1]:

 we identify the points facing each other under the graph

The previous proposition allows to define a continuous version of well-labeled forest.

Quotient of [0, 1]:

- we identify the points facing each other under the graph
- \Rightarrow s \sim t

The previous proposition allows to define a continuous version of well-labeled forest.

Quotient of [0, 1]:

- we identify the points facing each other under the graph
- ♦ S ~ i
- ↓ u ½ \

The previous proposition allows to define a continuous version of well-labeled forest.

Quotient of [0, 1]:

 we identify the points facing each other under the graph

 \star s \sim t

We endow this quotient with Brownian labels such that the variations along the "branches of the forest" are Brownian motions.

planar quad.

Chapuy–Marcus
–Schaeffer

genus g bip. quad.

quad. with a bdry

Bouttier–Di Francesco –Guitter

well-labeled g-tree

well-labeled forest (+ bridge)

planar quad.

genus g bip. quad.

quad. with a bdry

well-labeled tree

well-labeled g-tree

well-labeled forest (+ bridge)

planar quad.

well-labeled tree

genus g bip. quad.

well-labeled g-tree

quad. with a bdry

well-labeled forest (+ bridge)

well-labeled tree

genus g bip. quad.

well-labeled g-tree

scheme + well-labeled forests (+ bridges)

quad. with a bdry

well-labeled forest (+ bridge)

well-labeled tree

genus g bip. quad.

scheme + well-labeled forests (+ bridges)

quad. with a bdry

well-labeled forest (+ bridge)

planar quad.

well-labeled tree

genus g bip. quad.

scheme + well-labeled forests (+ bridges)

quad. with a bdry

well-labeled forest (+ bridge)

well-labeled tree

Continuum Random Tree

genus g bip. quad.

scheme + well-labeled forests (+ bridges)

quad. with a bdry

well-labeled forest (+ bridge)

planar quad.

well-labeled tree

Continuum Random Tree with Brownian labels

genus g bip. quad.

scheme + well-labeled forests (+ bridges)

quad. with a bdry

well-labeled forest (+ bridge)

planar quad.

genus g bip. quad.

quad. with a bdry

well-labeled tree

scheme + well-labeled forests (+ bridges)

well-labeled forest (+ bridge)

Continuum Random Tree with Brownian labels

Brownian g-tree gluing of Brownian bridges then Brownian forest along the edges of a scheme

planar quad.

well-labeled tree

Continuum Random Tree with Brownian labels

genus g bip. quad.

Brownian g-tree gluing of Brownian bridges then Brownian forest along the edges of a scheme

well-labeled forest (+ bridge)

quad. with a bdry

planar quad.

well-labeled tree

Continuum Random Tree with Brownian labels

genus g bip. quad.

Brownian g-tree gluing of Brownian bridges then Brownian forest along the edges of a scheme

well-labeled forest (+ bridge)

Thank you for your attention