Limite d'échelle de cartes aléatoires en genre quelconque

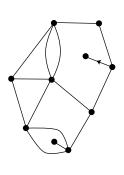
ANR A3

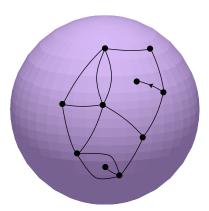
Bordeaux

Jérémie BETTINELLI

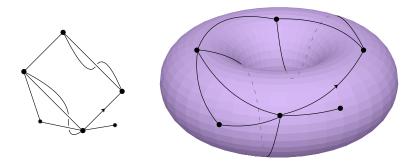
juin 2010

Cartes, faces, genre, racine

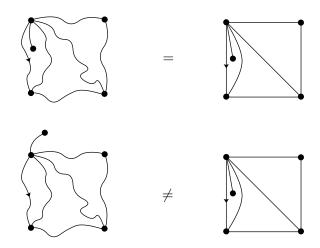




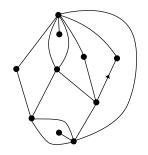
Cartes, faces, genre, racine



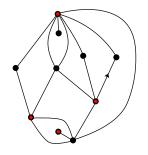
Cartes isomorphes



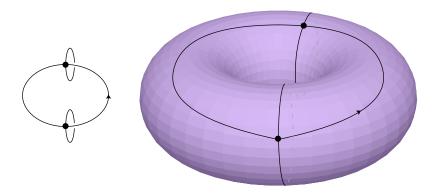
Quadrangulations

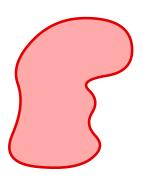


Cartes biparties

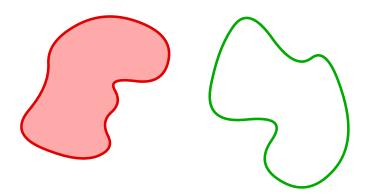


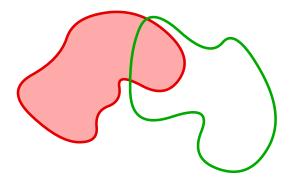
Exemple de quadrangulation non bipartie en genre 1

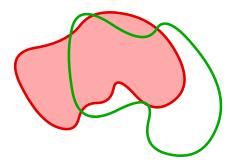


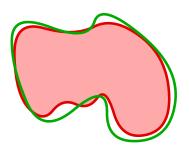


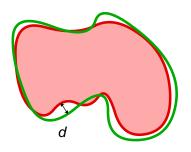












- [X, d] : classe d'isométries de (X, d)
- CM := $\{[X, d], (X, d) \text{ métrique compact}\}$

$$d_{GH}\left([X,d],[X',d']
ight) := egin{array}{c} \inf & \delta_Hig(arphi(X),arphi'(X')ig) \ (Z,\delta) ext{ métrique} \ & arphi:(X,d) o(Z,\delta) \ & arphi':(X',d') o(Z,\delta) \ \end{array}$$

• L'espace (CM, d_{GH}) est polonais.

Limite d'échelle

• q_n uniforme, bipartie, enracinée, n faces, genre g

Théoreme (B.)

L'espace métrique $(V(\mathfrak{q}_n), n^{-1/4}d_{gr})$ tend en loi pour la topologie de Gromov-Hausdorff, le long d'une sous-suite, vers un espace métrique aléatoire limite $(\mathfrak{q}_{\infty}, d_{\infty})$.

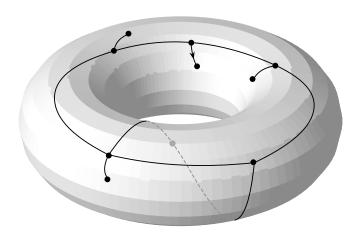
Théoreme (B.)

La dimension de Hausdorff de $(\mathfrak{q}_{\infty}, d_{\infty})$ est p.s. 4.

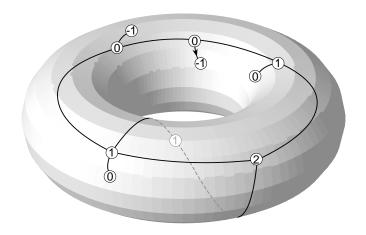
Théoreme (B.)

L'espace $(\mathfrak{q}_{\infty}, d_{\infty})$ est p.s. homéomorphe au tore à g trous \mathbb{T}_g .

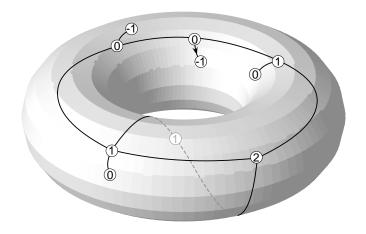
g-arbres



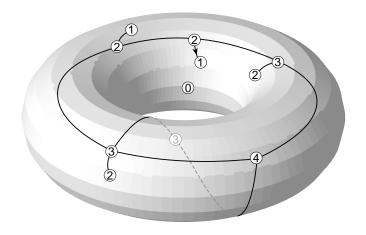
g-arbres bien étiquetés



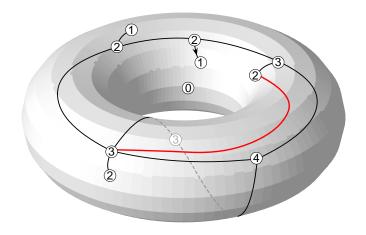
- quad. biparties enracinées pointées à n faces en genre g
- *g*-arbres enracinés bien étiquetés à *n* arêtes, $\varepsilon \in \{-1, 1\}$



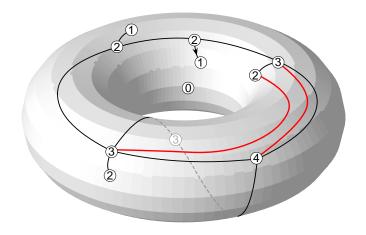
- quad. biparties enracinées pointées à n faces en genre g
- g-arbres enracinés bien étiquetés à n arêtes, $\varepsilon \in \{-1, 1\}$



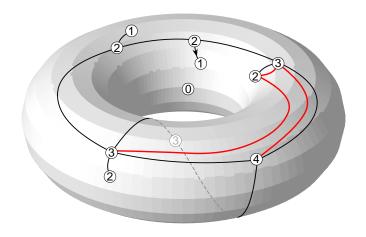
- quad. biparties enracinées pointées à n faces en genre g
- *g*-arbres enracinés bien étiquetés à *n* arêtes, $\varepsilon \in \{-1, 1\}$



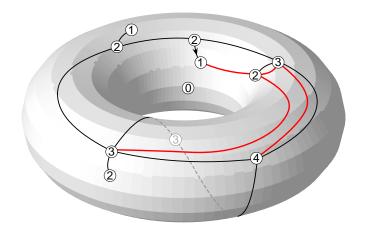
- quad. biparties enracinées pointées à n faces en genre g
- *g*-arbres enracinés bien étiquetés à *n* arêtes, $\varepsilon \in \{-1, 1\}$



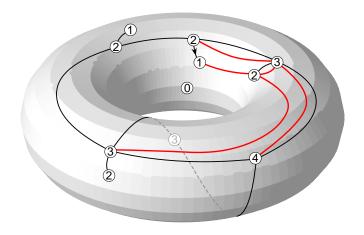
- quad. biparties enracinées pointées à n faces en genre g
- *g*-arbres enracinés bien étiquetés à *n* arêtes, $\varepsilon \in \{-1, 1\}$



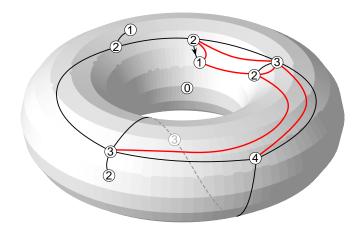
- quad. biparties enracinées pointées à n faces en genre g
- *g*-arbres enracinés bien étiquetés à *n* arêtes, $\varepsilon \in \{-1, 1\}$



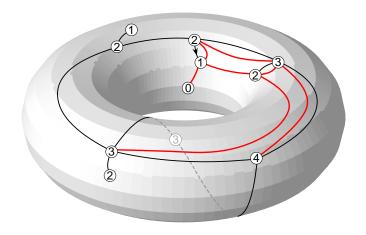
- quad. biparties enracinées pointées à n faces en genre g
- g-arbres enracinés bien étiquetés à n arêtes, $\varepsilon \in \{-1, 1\}$



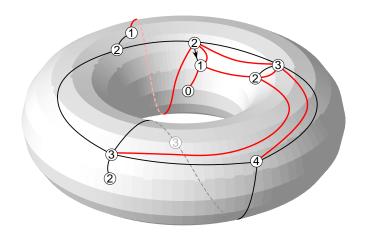
- quad. biparties enracinées pointées à n faces en genre g
- g-arbres enracinés bien étiquetés à n arêtes, $\varepsilon \in \{-1, 1\}$



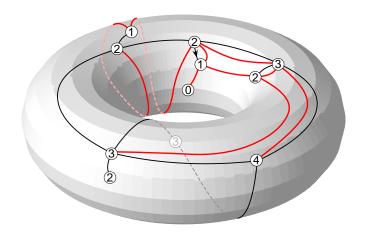
- quad. biparties enracinées pointées à n faces en genre g
- *g*-arbres enracinés bien étiquetés à *n* arêtes, $\varepsilon \in \{-1, 1\}$



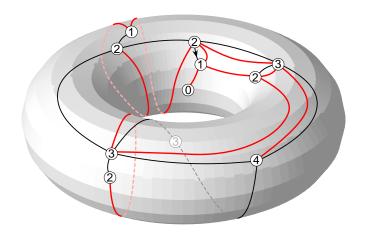
- quad. biparties enracinées pointées à n faces en genre g
- *g*-arbres enracinés bien étiquetés à *n* arêtes, $\varepsilon \in \{-1, 1\}$



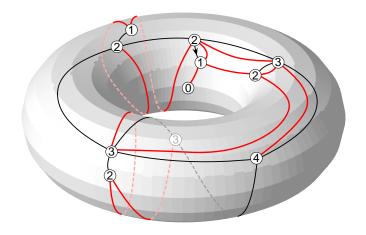
- quad. biparties enracinées pointées à n faces en genre g
- *g*-arbres enracinés bien étiquetés à *n* arêtes, $\varepsilon \in \{-1, 1\}$



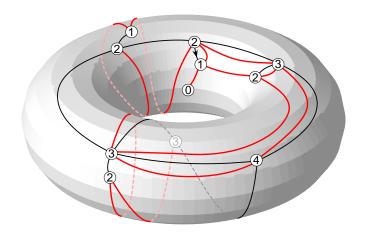
- quad. biparties enracinées pointées à n faces en genre g
- *g*-arbres enracinés bien étiquetés à *n* arêtes, $\varepsilon \in \{-1, 1\}$



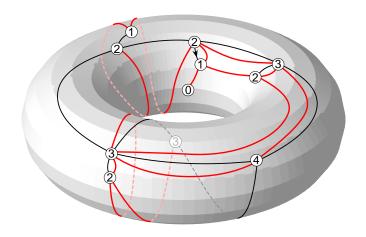
- quad. biparties enracinées pointées à n faces en genre g
- *g*-arbres enracinés bien étiquetés à *n* arêtes, $\varepsilon \in \{-1, 1\}$



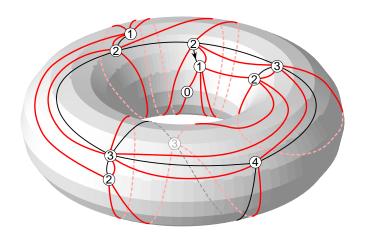
- quad. biparties enracinées pointées à n faces en genre g
- g-arbres enracinés bien étiquetés à n arêtes, $\varepsilon \in \{-1, 1\}$



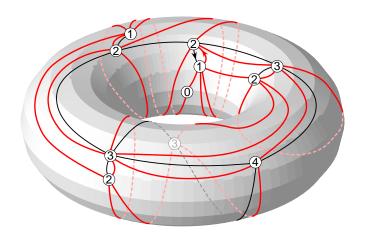
- quad. biparties enracinées pointées à n faces en genre g
- *g*-arbres enracinés bien étiquetés à *n* arêtes, $\varepsilon \in \{-1, 1\}$



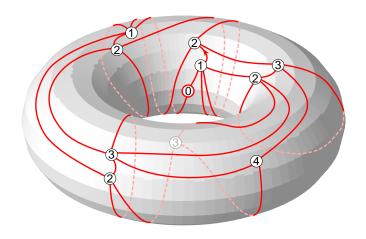
- quad. biparties enracinées pointées à n faces en genre g
- g-arbres enracinés bien étiquetés à n arêtes, $\varepsilon \in \{-1, 1\}$



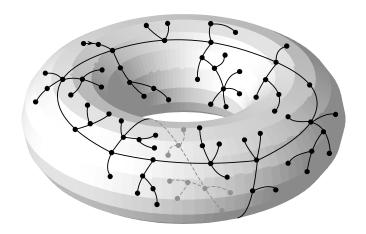
- quad. biparties enracinées pointées à n faces en genre g
- g-arbres enracinés bien étiquetés à n arêtes, $\varepsilon \in \{-1, 1\}$

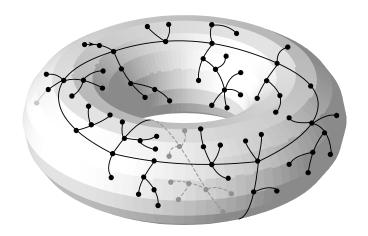


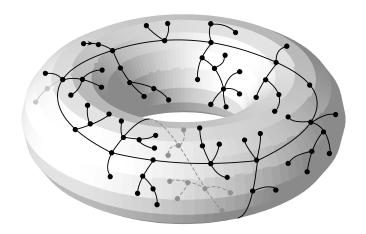
- quad. biparties enracinées pointées à n faces en genre g
- *g*-arbres enracinés bien étiquetés à *n* arêtes, $\varepsilon \in \{-1, 1\}$

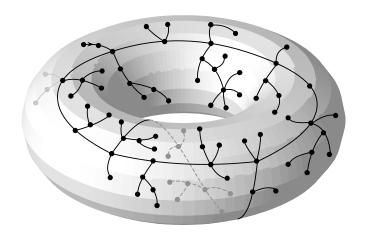


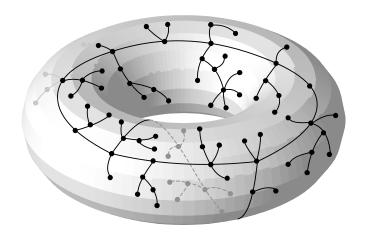
Décomposition d'un g-arbre

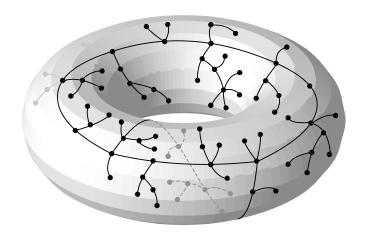


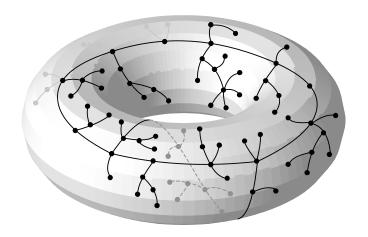


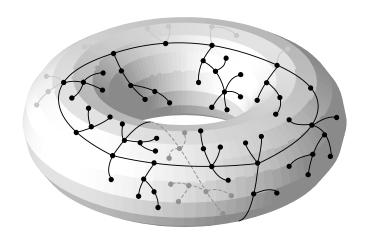


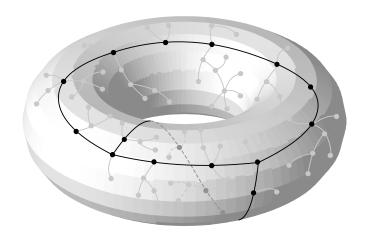


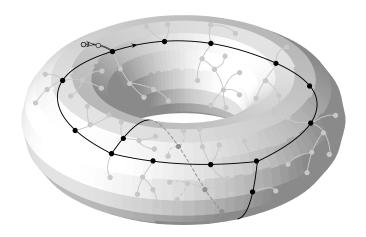


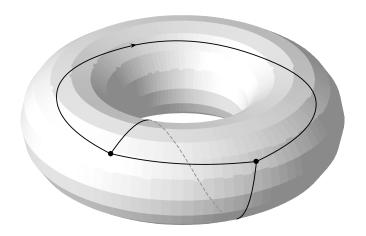


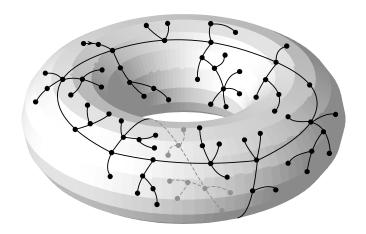




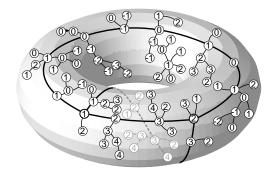




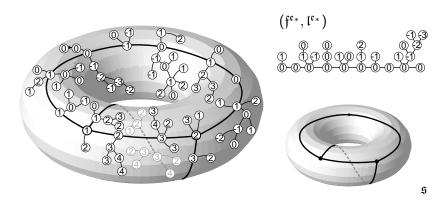




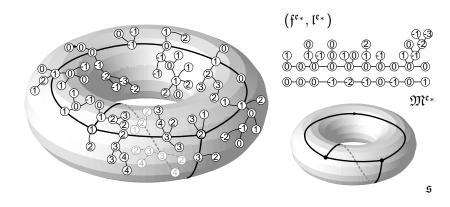
Décomposition d'un g-arbre bien étiqueté



Décomposition d'un g-arbre bien étiqueté



Décomposition d'un g-arbre bien étiqueté



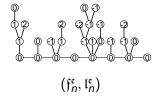
Convergence des paramètres

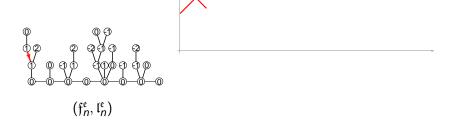
- g-arbre bien étiqueté à n arêtes uniforme
- \mathfrak{s}_n , $(m_n^{\mathfrak{e}})_{\mathfrak{e}}$, $(\sigma_n^{\mathfrak{e}})_{\mathfrak{e}}$, $(I_n^{\mathfrak{v}})_{\mathfrak{v}}$, u_n

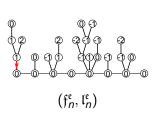
$$\bullet \ \mathfrak{p}_n := \left(\mathfrak{s}_n, \left(\frac{2m_n^{\mathfrak{e}} + \sigma_n^{\mathfrak{e}}}{2n}\right)_{\mathfrak{e}}, \left(\frac{\sigma_n^{\mathfrak{e}}}{\sqrt{2n}}\right)_{\mathfrak{e}}, \left(\frac{I_N'}{\left(\frac{8n}{9}\right)^{1/4}}\right)_V, \frac{u_n}{2n}\right)$$

Proposition

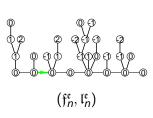
Le vecteur \mathfrak{p}_n tend en loi vers une probabilité μ .

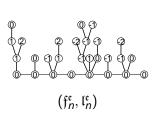


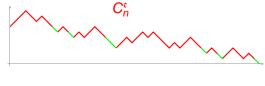


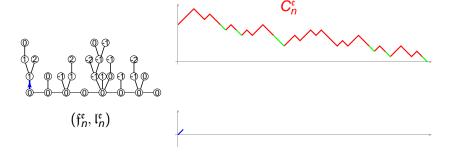


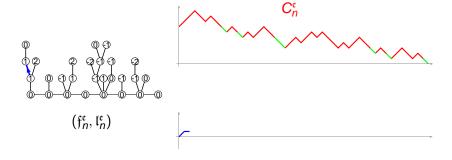


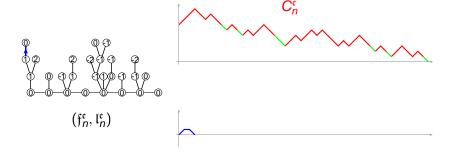


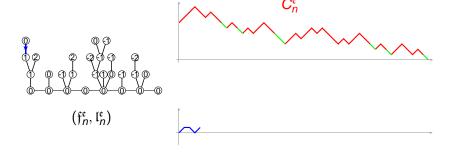


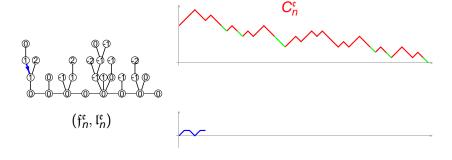


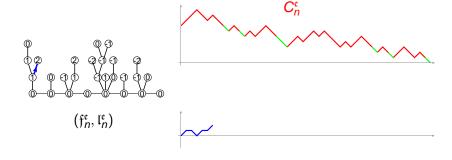


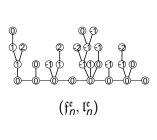


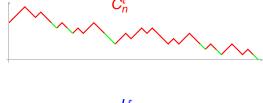












Convergence des g-arbres

Proposition

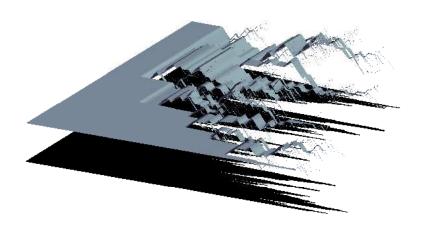
$$\left(\mathfrak{p}_n, \left(\frac{\mathfrak{M}_n^{\mathfrak{e}}(\sqrt{2n}\cdot)}{\left(\frac{8n}{9}\right)^{1/4}}\right)_{\mathfrak{e}}, \left(\frac{C_n^{\mathfrak{e}}(2n\cdot)}{\sqrt{2n}}, \frac{L_n^{\mathfrak{e}}(2n\cdot)}{\left(\frac{8n}{9}\right)^{1/4}}\right)_{\mathfrak{e}}\right)$$

tend en loi vers $(\mathfrak{p}_{\infty}, (C_{\infty}^{\mathfrak{e}}, L_{\infty}^{\mathfrak{e}})_{\mathfrak{e}}, (\mathfrak{M}_{\infty}^{\mathfrak{e}})_{\mathfrak{e}})$ où $\mathfrak{p}_{\infty} \sim \mu$, et, conditionnellement à \mathfrak{p}_{∞} ,

- ullet $(C_{\infty}^{\mathfrak{e}}, L_{\infty}^{\mathfrak{e}})$, $\mathfrak{e} \in \vec{E}(\mathfrak{s}_{\infty})$ et $(\mathfrak{M}_{\infty}^{\mathfrak{e}})$, $\mathfrak{e} \in \check{E}(\mathfrak{s}_{\infty})$ sont indpdts
- $\bullet \ (\mathfrak{M}_{\infty}^{\mathfrak{e}}) \stackrel{(loi)}{=} B_{[0,\sigma_{\infty}^{\mathfrak{e}}]}^{0 \to l_{\infty}^{\mathfrak{e}}} \quad \textit{(pont brownien)}$
- $\bullet \ (\textit{\textbf{C}}_{\infty}^{\mathfrak{e}},\textit{\textbf{L}}_{\infty}^{\mathfrak{e}}) \stackrel{(\textit{loi})}{=} \left(\textit{\textbf{F}}_{[0,\textit{m}_{\infty}^{\mathfrak{e}}]}^{\sigma_{\infty}^{\mathfrak{e}} \rightarrow 0},\textit{\textbf{Z}}_{[0,\textit{m}_{\infty}^{\mathfrak{e}}]}\right)$
- $\bullet \ \mathfrak{M}_{\infty}^{\overline{\mathfrak{e}}}(\mathsf{s}) = \mathfrak{M}_{\infty}^{\mathfrak{e}}(\sigma_{\infty}^{\mathfrak{e}} \mathsf{s}) \mathit{I}_{\infty}^{\mathfrak{e}}$

Pont de premier passage

Serpent



Limite d'échelle

• q_n uniforme, bipartie, enracinée, n faces, genre g

Théoreme

L'espace métrique $(V(\mathfrak{q}_n), n^{-1/4}d_{gr})$ tend en loi pour la topologie de Gromov-Hausdorff, le long d'une sous-suite, vers un espace métrique aléatoire limite $(\mathfrak{q}_{\infty}, d_{\infty})$.

Merci