Introduction aux cartes aléatoires Soutenance de magistère

Jérémie BETTINELLI

Octobre 2008

Table des matières

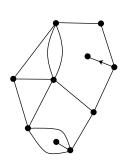
- Définitions
 - Description classique
 - Formule d'Euler
 - Description combinatoire
- Méthodes de comptage par décomposition récursive
- Approches bijectives
 - Bijection de Gilles SCHAEFFER
 - Limite d'échelle

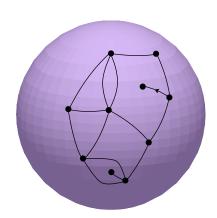
Octobre 2008

Table des matières

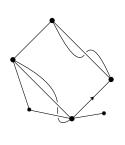
- Définitions
 - Description classique
 - Formule d'Euler
 - Description combinatoire
- Méthodes de comptage par décomposition récursive
- Approches bijectives
 - Bijection de Gilles Schaeffer
 - Limite d'échelle

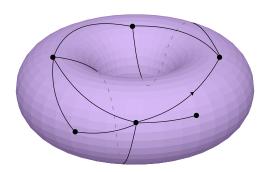
Cartes, faces, genre, racine





Cartes, faces, genre, racine

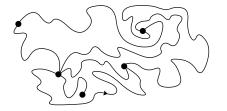




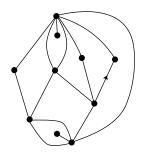
Octobre 2008

Description classique Formule d'Euler Description combinatoire

Cartes isomorphes

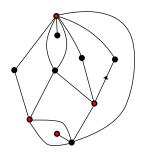


Quadrangulations



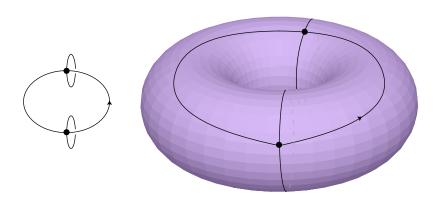
Description classique Formule d'Euler Description combinatoire

Cartes biparties



Octobre 2008

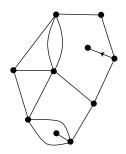
Cartes biparties



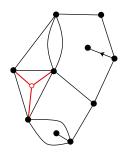
Proposition

Proposition

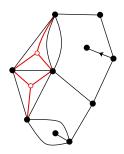
Proposition



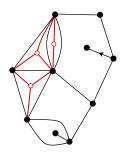
Proposition



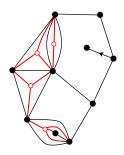
Proposition



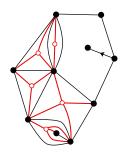
Proposition



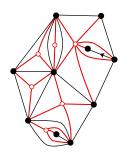
Proposition



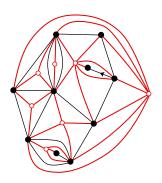
Proposition



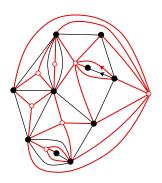
Proposition



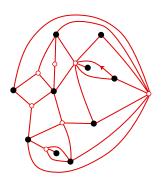
Proposition



Proposition



Proposition

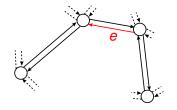


Formule d'Euler

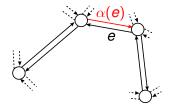
Proposition

On a

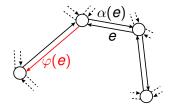
$$|V(m)| - |E(m)| + |F(m)| = 2 - 2g.$$



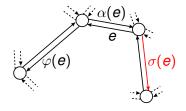
- ullet cycles de $\alpha \longleftrightarrow$ arêtes
- cycles de $\varphi \longleftrightarrow$ faces
- cycles de $\sigma \longleftrightarrow$ sommets



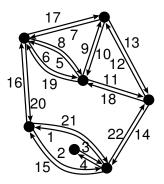
- ullet cycles de $\alpha \longleftrightarrow$ arêtes
- ullet cycles de $\varphi \longleftrightarrow$ faces
- cycles de $\sigma \longleftrightarrow$ sommets

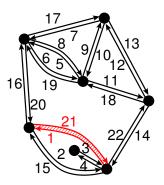


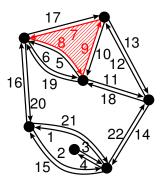
- ullet cycles de $\alpha \longleftrightarrow$ arêtes
- ullet cycles de $\varphi \longleftrightarrow$ faces
- ullet cycles de $\sigma \longleftrightarrow$ sommets

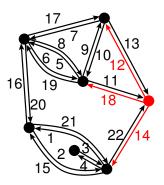


- ullet cycles de $\alpha \longleftrightarrow$ arêtes
- cycles de $\varphi \longleftrightarrow$ faces
- \bullet cycles de $\sigma \longleftrightarrow$ sommets









Graphes enrubannés

- ullet α : involution sans point fixe
- $\varphi \alpha \sigma = 1$
- $\langle \varphi, \alpha, \sigma \rangle$ agit transitivement sur X

Graphes enrubannés

- ullet α : involution sans point fixe
- $\varphi \alpha \sigma = 1$
- $\langle \varphi, \alpha, \sigma \rangle$ agit transitivement sur X

Graphes enrubannés

- ullet α : involution sans point fixe
- $\varphi \alpha \sigma = 1$
- $\langle \varphi, \alpha, \sigma \rangle$ agit transitivement sur X

Table des matières

- Définitions
 - Description classique
 - Formule d'Euler
 - Description combinatoire
- Méthodes de comptage par décomposition récursive
- Approches bijectives
 - Bijection de Gilles Schaeffer
 - Limite d'échelle

Exemple : comptage des arbres

- A_n: arbres à n arêtes

$$A(x) := \sum_{t \in \mathcal{A}} x^{|t|}$$
$$= \sum_{n \in \mathbb{N}} |\mathcal{A}_n| x^{n+1}$$

Exemple : comptage des arbres

- A_n: arbres à n arêtes

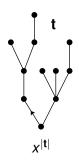
$$A(x) := \sum_{t \in \mathscr{A}} x^{|t|}$$
$$= \sum_{n \in \mathbb{N}} |\mathscr{A}_n| x^{n+1}$$

Exemple : comptage des arbres

- A_n: arbres à n arêtes

$$A(x) := \sum_{t \in \mathscr{A}} x^{|t|}$$
$$= \sum_{n \in \mathbb{N}} |\mathscr{A}_n| x^{n+1}$$

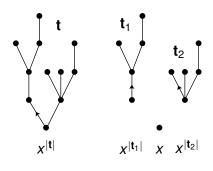
Exemple : comptage des arbres



- \mathscr{A}_n : arbres à n arêtes
- \[\alpha \]: arbres

$$A(x) := \sum_{t \in \mathcal{A}} x^{|t|}$$
$$= \sum_{n \in \mathbb{N}} |\mathcal{A}_n| x^{n+1}$$

Exemple : comptage des arbres



- \mathcal{A}_n : arbres à n arêtes

$$A(x) := \sum_{t \in \mathscr{A}} x^{|t|}$$
$$= \sum_{n \in \mathbb{N}} |\mathscr{A}_n| x^{n+1}$$

Comptage des cartes

Théorème

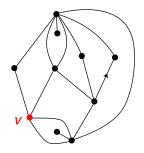
Le nombre de cartes planaires enracinées à n arêtes est

$$\frac{2}{n+2}$$
 3ⁿCat_n.

Table des matières

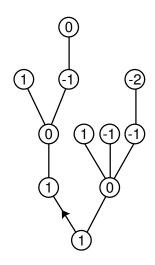
- Définitions
 - Description classique
 - Formule d'Euler
 - Description combinatoire
- Méthodes de comptage par décomposition récursive
- 3 Approches bijectives
 - Bijection de Gilles SCHAEFFER
 - Limite d'échelle

Quadrangulations pointées



Octobre 2008

Arbres bien étiquetés



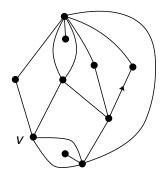
Octobre 2008

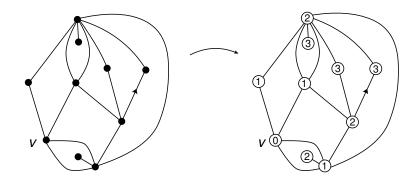
Comptage des cartes

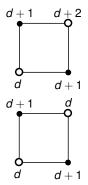
Théorème

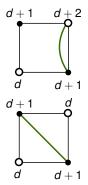
Le nombre de cartes planaires enracinées à n arêtes est

$$\frac{2}{n+2}$$
 3ⁿCat_n.

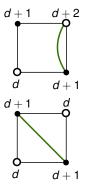


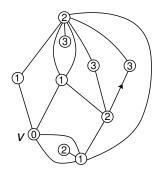


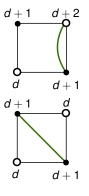


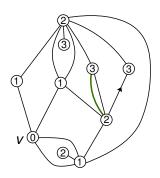


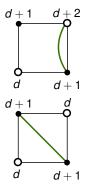
Octobre 2008

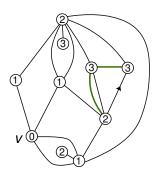


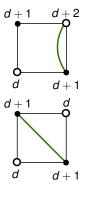


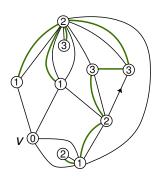


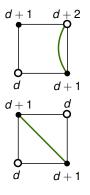


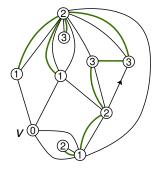


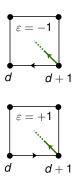




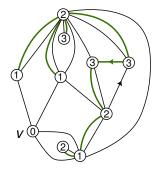


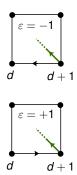


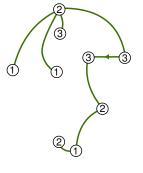




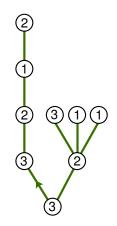


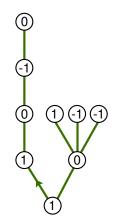


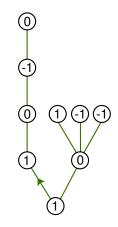


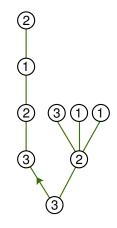


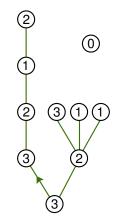
$$\varepsilon = +\mathbf{1}$$

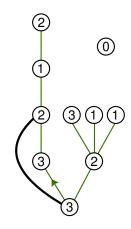


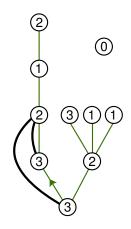




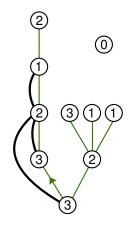


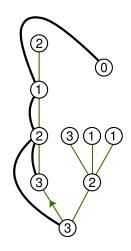


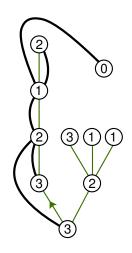


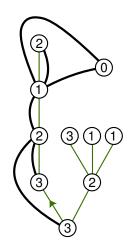


Octobre 2008

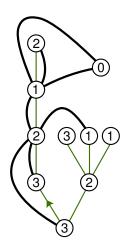


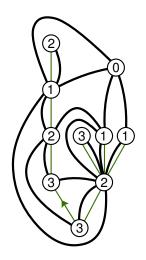


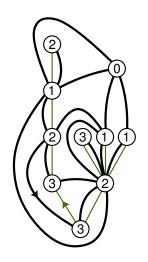




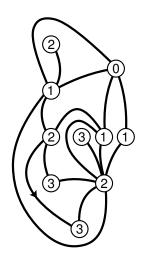
Octobre 2008

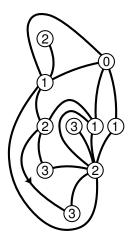


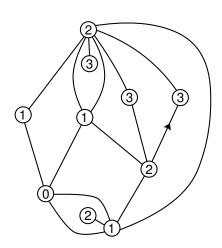




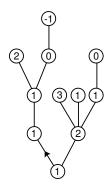
Octobre 2008



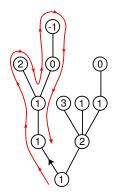


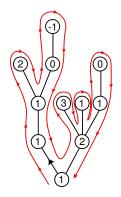


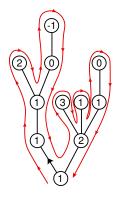
Processus de contour et d'étiquettes

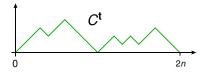


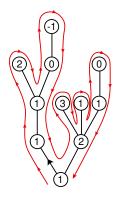
Octobre 2008

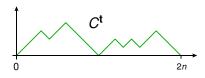












- (\mathbf{t}_n, I_n) uniforme
- $C^n := C^{\mathbf{t}_n}$ et $L^n := L^{\mathbf{t}_n}$

Théorème (Chassaing, Marckert, Schaeffer)

$$\left(\left(\frac{C_{2ns}^n}{(2n)^{\frac{1}{2}}}\right)_{0\leq s\leq 1}, \left(\frac{L_{2ns}^n}{\left(\frac{8n}{9}\right)^{\frac{1}{4}}}\right)_{0\leq s\leq 1}\right) \xrightarrow[n\to\infty]{(loi)} (\mathbf{e},Z),$$

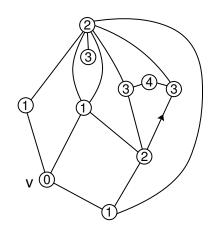
pour la topologie uniforme sur $\mathscr{C}([0,1],\mathbb{R})^2$.

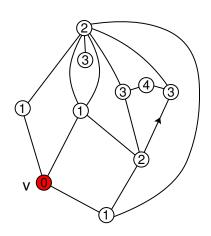
- (\mathbf{t}_n, I_n) uniforme

Théorème (Chassaing, Marckert, Schaeffer)

$$\left(\left(\frac{C_{2ns}^n}{(2n)^{\frac{1}{2}}}\right)_{0\leq s\leq 1},\, \left(\frac{L_{2ns}^n}{\left(\frac{8n}{9}\right)^{\frac{1}{4}}}\right)_{0\leq s\leq 1}\right)\xrightarrow[n\to\infty]{(loi)}(\textbf{e},Z)\,,$$

pour la topologie uniforme sur $\mathscr{C}([0,1],\mathbb{R})^2$.





•
$$\mathcal{I}_{\mathbf{q},v}(0) = 1$$

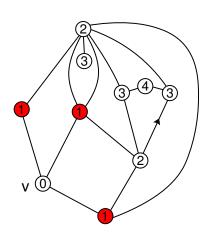
•
$$I_{q,v}(1) = 3$$

•
$$I_{q,v}(2) = 2$$

•
$$\mathcal{I}_{q,v}(3) = 3$$

•
$$I_{q,v}(4) = 1$$

•
$$\mathcal{R}_{q,v} = 4$$



•
$$\mathcal{I}_{\mathbf{q},\nu}(0) = 1$$

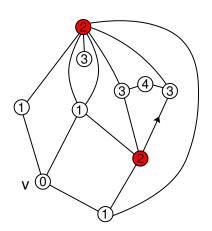
•
$$\mathcal{I}_{q,v}(1) = 3$$

•
$$I_{q,v}(2) = 2$$

•
$$\mathcal{I}_{q,v}(3) = 3$$

•
$$I_{q,v}(4) = 1$$

•
$$\mathcal{R}_{\mathbf{q},V} = 4$$



•
$$\mathcal{I}_{\mathbf{q},\nu}(0) = 1$$

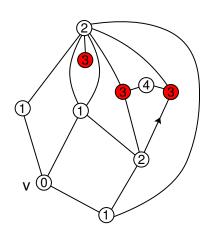
•
$$\mathcal{I}_{\mathbf{q},\nu}(1) = 3$$

•
$$\mathcal{I}_{q,v}(2) = 2$$

•
$$\mathcal{I}_{q,v}(3) = 3$$

•
$$I_{q,v}(4) = 1$$

•
$$\mathcal{R}_{\mathbf{q},V} = 4$$



•
$$\mathcal{I}_{\mathbf{q},\nu}(0) = 1$$

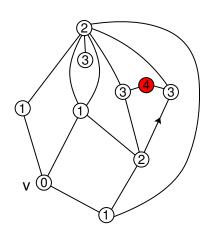
•
$$\mathcal{I}_{\mathbf{q},\nu}(1) = 3$$

•
$$\mathcal{I}_{q,v}(2) = 2$$

•
$$\mathcal{I}_{q,v}(3) = 3$$

•
$$I_{q,v}(4) = 1$$

•
$$\mathcal{R}_{q,v} = 4$$



•
$$\mathcal{I}_{\mathbf{q},\nu}(0) = 1$$

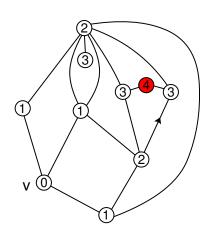
•
$$\mathcal{I}_{\mathbf{q},\nu}(1) = 3$$

•
$$\mathcal{I}_{q,v}(2) = 2$$

•
$$\mathcal{I}_{\mathbf{q},\nu}(3) = 3$$

•
$$\mathcal{I}_{q,\nu}(4) = 1$$

•
$$\mathcal{R}_{q,v} = 4$$



•
$$\mathcal{I}_{\mathbf{q},\nu}(0) = 1$$

•
$$\mathcal{I}_{\mathbf{q},\nu}(1) = 3$$

•
$$\mathcal{I}_{q,v}(2) = 2$$

•
$$\mathcal{I}_{q,v}(3) = 3$$

•
$$\mathcal{I}_{\mathbf{q},\nu}(4) = 1$$

•
$$\mathcal{R}_{\mathbf{q},v} = 4$$

- (\mathbf{q}_n, v_n) uniforme
- ullet $\mathcal{R}_n := \mathcal{R}_{\mathbf{q}_n, v_n}$ et $\mathcal{I}_n := \mathcal{I}_{\mathbf{q}_n, v_n}$

Théorème (Chassaing, Schaeffer)

$$\diamond \quad \frac{\mathcal{R}_n}{n^{\frac{1}{4}}} \xrightarrow[n \to \infty]{(loi)} \mathcal{R}_{\infty} \quad dans \, \mathbb{R},$$

$$\diamond \quad \frac{\mathcal{I}_n\left(n^{\frac{1}{4}}\cdot\right)}{n+2} \xrightarrow[n\to\infty]{} \mathcal{I}_{\infty} \quad \text{pour la topo. de la conv. faible.}$$

- \bullet (\mathbf{q}_n, v_n) uniforme
- ullet $\mathcal{R}_n := \mathcal{R}_{\mathbf{q}_n, v_n}$ et $\mathcal{I}_n := \mathcal{I}_{\mathbf{q}_n, v_n}$

Théorème (Chassaing, Schaeffer)

$$\diamond \quad \frac{\mathcal{R}_n}{n^{\frac{1}{4}}} \xrightarrow[n \to \infty]{\text{(loi)}} \mathcal{R}_\infty \quad \text{ dans } \mathbb{R},$$

$$\Rightarrow \frac{\mathcal{I}_n\left(n^{\frac{1}{4}}\cdot\right)}{n+2} \xrightarrow[n\to\infty]{} \mathcal{I}_{\infty} \quad \text{pour la topo. de la conv. faible.}$$

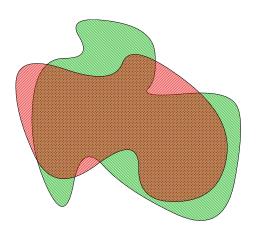
- (\mathbf{q}_n, v_n) uniforme
- ullet $\mathcal{R}_n := \mathcal{R}_{\mathbf{q}_n, v_n}$ et $\mathcal{I}_n := \mathcal{I}_{\mathbf{q}_n, v_n}$

Théorème (Chassaing, Schaeffer)

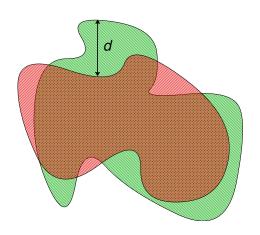
$$\diamond \quad \frac{\mathcal{R}_n}{n^{\frac{1}{4}}} \xrightarrow[n \to \infty]{(loi)} \mathcal{R}_{\infty} \quad dans \, \mathbb{R},$$

$$\Rightarrow \frac{\mathcal{I}_n\left(n^{\frac{1}{4}}\cdot\right)}{n+2} \xrightarrow[n\to\infty]{} \mathcal{I}_{\infty} \quad \text{pour la topo. de la conv. faible.}$$

Distance de Hausdorff



Distance de Hausdorff



Topologie de Gromov-Hausdorff

- [X, d]: classe d'isomorphismes de (X, d)
- CM := $\{[X, d], (X, d) \text{ métrique compact}\}$

$$egin{aligned} d_{GH}\left([X,d],[X',d']
ight) &:= & \inf \left(Z,\delta) & \mathsf{mfetatrique} \ &arphi:(X,d)
ightarrow (Z,\delta) \ &arphi':(X',d')
ightarrow (Z,\delta) \end{aligned}$$

Théorème (GROMOV, HAUSDORFF)

L'espace (CM, d_{GH}) est polonais.

Topologie de Gromov-Hausdorff

- [X, d]: classe d'isomorphismes de (X, d)
- CM := $\{[X, d], (X, d) \text{ métrique compact}\}$

$$egin{aligned} d_{GH}\left([X,d],[X',d']
ight) &:= & \inf \ \left(Z,\delta
ight) & \min \ \left(Z,\delta
ight) & \phi : (X,d)
ightarrow (Z,\delta) \ arphi' : (X',d')
ightarrow (Z,\delta) \end{aligned}$$

Théorème (GROMOV, HAUSDORFF)

L'espace (CM, d_{GH}) est polonais.

Topologie de Gromov-Hausdorff

- [X, d]: classe d'isomorphismes de (X, d)
- CM := $\{[X, d], (X, d) \text{ métrique compact}\}$

$$egin{aligned} d_{GH}\left([X,d],[X',d']
ight) &:= & \inf \ \left(Z,\delta
ight) & \min \ \left(Z,\delta
ight) & \phi : (X,d)
ightarrow (Z,\delta) \ arphi' : (X',d')
ightarrow (Z,\delta) \end{aligned}$$

Théorème (GROMOV, HAUSDORFF)

L'espace (CM, d_{GH}) est polonais.

\bullet **q**_n uniforme

Théorème (LE GALL

L'espace métrique $(V(\mathbf{q}_n), n^{-1/4}d_{gr})$ tend en loi pour la topologie de Gromov-Hausdorff, le long d'une sous-suite, vers un espace métrique aléatoire limite, noté (S, D).

Théorème (LE GALL)

La dimension de Hausdorff de (S, D) est p.s. 4

Théorème (LE GALL, PAULIN)

L'espace (S, D) est p.s. homéomorphe à la sphère de \mathbb{R}^3 .

 \bullet **q**_n uniforme

Théorème (LE GALL)

L'espace métrique $(V(\mathbf{q}_n), n^{-1/4}d_{qr})$ tend en loi pour la topologie de Gromov-Hausdorff, le long d'une sous-suite, vers un espace métrique aléatoire limite, noté (S, D).

 \bullet **q**_n uniforme

Théorème (LE GALL)

L'espace métrique $(V(\mathbf{q}_n), n^{-1/4}d_{gr})$ tend en loi pour la topologie de Gromov-Hausdorff, le long d'une sous-suite, vers un espace métrique aléatoire limite, noté (S, D).

Théorème (LE GALL)

La dimension de Hausdorff de (S, D) est p.s. 4.

Théorème (LE GALL, PAULIN)

L'espace (S, D) est p.s. homéomorphe à la sphère de \mathbb{R}^3 .

 \bullet **q**_n uniforme

Théorème (LE GALL)

L'espace métrique $(V(\mathbf{q}_n), n^{-1/4}d_{gr})$ tend en loi pour la topologie de Gromov-Hausdorff, le long d'une sous-suite, vers un espace métrique aléatoire limite, noté (S, D).

Théorème (LE GALL)

La dimension de Hausdorff de (S, D) est p.s. 4.

Théorème (LE GALL, PAULIN)

L'espace (S, D) est p.s. homéomorphe à la sphère de \mathbb{R}^3 .